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The Exo-Higgs scenario

What is the Exo-Higgs scenario?

The Exo-Higgs is an extension of the SM that allows an
EW-like baryogenesis.

The EW baryogenesis is an attractive and testable way to
generate a baryon-antibaryon asymmetry.

The SM has all the ingredients for a successful baryogenesis,
but not in the right quantities.

To get around this, one can assume that a new gauge group
breaks down at some scale ∼ TeV and triggers the
Baryogenesis.
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SU(2)e symmetry

As a simple implementation of this idea, we assume the
existence of SU(2)e gauge symmetry.

The exo-symmetry is completely broken by the vev of a Higgs
field η at some temperature

T > T (EWPT )

SM fields are neutral under SU(2)e , however there are (3
generations of) new fermions charged under this symmetry
and the SM gauge group.
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Ϙ’s and Λ’s

An interesting choice of quantum numbers for the new fermions is

ϘL = (2, 3, 1,−1

3
) ; 2× ϘR = (1, 3, 1,−1

3
)

2× ΛL = (1, 1, 1,−1) ; ΛR = (2, 1, 1,−1)

under the SU(2)e × SU(3)× SU(2)L × U(1)Y gauge group.

The fermions get their masses through Yukawa coupling to η.
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The Exo Higgs Langrangian

The Lagrangian is the sum of three contributions:

L = LSM + Le + Lm

We focus on the third piece:

Lm = 2kηHη
†ηH†H − YϘqη Ϙ̄LdR − YqϘHq̄LϘR −MΛΛ̄LeR .

We impose that kηHv
2
η = µ2

H . This ties the EW symmetry breaking
to the Exo symmetry breaking.

At tree level the Lagrangian preserves B and L. However at
one-loop level the B − L current is anomalous under SU(2)e .
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∆(B − L)

SU(2)e

SU(2)e

B

−

SU(2)e

SU(2)e

L

6= 0

The B − L anomaly can lead to the generation of ∆(B − L) 6= 0 if
the SU(2)e breaking involves a strong first order phase transition.

Condition for a first order transition

η(Tc)/Tc ∼
3 g3

e

16π λη
& 1

The strong phase transition at a temperature of order 1 TeV
implies gravitational wave signals that may be detectable by future
space-based missions, such as LISA.
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Dark Matter

We introduce a new complex scalar χ that carries a good global
charge Qχ = +1. We also demand that ΛL,R both have Qχ = +1.
This forbids the MΛΛ̄LeR mixing, and allows us to write

λ` χΛ̄L`R .

We will assume that χ is the lightest Qχ 6= 0 state, and so it will
be a stable particle and a potential DM candidate.
We add the new quartic interactions

λχ(χ†χ)2 + 2kχHχ
†χH†H + 2kχηχ

†χη†η .

The mixed terms can in principle supply the required mass term for
χ, after exo-spin and electroweak symmetry breaking.
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Relation between Qχ and ∆B

Exo-baryogenesis generates ∆(B − L) in the exo-sector;
Fast decay of exo-fermions injects ∆(B − L) into the SM and and
net Qχ charge into χ;
∆(B − L) is processed into B and L by the EW sphaleron, χ
particles stay stable since Qχ is conserved.

Since χχ∗ pairs annihilate
efficiently through t-channel into
leptons, and the number density
of χ and baryons are tied, χ is
required to have a particular
mass mχ.

χ

χ

Λ

l

l

Pier Paolo Giardino Dark Matter in the Exo-Higgs scenario



9/13

Dark Matter Mass

We have the following relations for the chemical potentials:

µdR = µϙ, µuL = µϙ + µ0,

µiR = µΛ − µχ, 3µϙ − µΛ = 0,∑
i

(µiR + µiL) + 3(µdR + µdL)− 6(µuR + µuL)

+12(µΛ + µϙ)− 2µ0 = 0,

As a result

∆B−L =
789

19
µϙ, ∆Qχ =

1008

19
µϙ.

After ∆B−L is processed into ∆B we find

∆Qχ
∆B

=
1036

263
⇒ mχ ≈ 1.3 GeV.
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Benchmark scenario.

First we set a benchmark scenario

mη = 1.5TeV Mass of the η field
vη = 2.5TeV Vev of the η field
mh
Ϙ

= 1.5TeV Mass of the heaviest Ϙ
ml
Ϙ
∼ 1TeV Mass of the lightest Ϙ’s

mΛ = 1TeV Mass of Λ’s
ge = 2 SU(2)e gauge coupling,

Lm = 2kηHη
†ηH†H − YϘqη Ϙ̄LdR − YqϘHq̄LϘR

induces changes in the Higgs couplings and FCNC operators.

kηHv
2
η = µ2

H → tan(2θηH) =
4kηH vH vη
m2

η−m2
H
∼ 7× 10−4.

Ϙ↔ qη and Ϙ↔ qH in equilibrium at T e
c ⇒ YϘq,YqϘ & 10−4
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Exo-fermion phenomenology

The Ϙ’s decay through three channels, Ϙ→ tW−, Ϙ→ bZ ,
and Ϙ→ bH, with BR ∼ 50%, ∼ 25%, and ∼ 25%,
respectively.

The bounds come from the searches for -1/3 vector-like quark.

Λ are mostly produced in pairs through Drell-Yan and can
decay only through the process Λ→ χ`.

For Λ ∼ 1TeV, the signal would be a pair of
opposite-sign-same-flavor leptons, with pT & a few hundred
GeV, and a large missing ET .

Main background: tt̄, W pair, and tW production. After cuts
we can expect O(10) events at the 13TeV LHC with 100
fb−1.
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Boson phenomenology

η is produced through gluon-fusion with ∼ 10 fb at 13TeV

with a ∼ 98% BR into gluons. The second largest BR ∼ 0.4%
is into photons ⇒ possible search at HL-LHC.

Cross section of a pair of ω’s is completely irrelevant at LHC
energies, while a 100TeV collider could produce it with a ≈ 5
fb cross section.
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Conclusion

The Exo-Higgs scenario is a possible extension of the SM that
offers a frameworks for a EW-like baryogenesis.

The model also allows a scalar asymmetric dark matter, whose
mass is defined by structure of the model.

Many possible signals at LHC.

The strong phase transition could result in GW detectable at
LISA.
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