Dark Matter in the Exo-Higgs scenario

Pier Paolo Giardino

Brookhaven National Laboratory

Brookhaven Forum 2017: In Search of New Paradigms

Based mainly on: H. Davoudiasl, P.P.G., C. Zhang arXiv:1605.00037

and H. Davoudiasl, P.P.G., C. Zhang arXiv:1612.05639

• What is the Exo-Higgs scenario?

- What is the Exo-Higgs scenario?
- The Exo-Higgs is an extension of the SM that allows an EW-like baryogenesis.

- What is the Exo-Higgs scenario?
- The Exo-Higgs is an extension of the SM that allows an EW-like baryogenesis.
- The EW baryogenesis is an attractive and testable way to generate a baryon-antibaryon asymmetry.

- What is the Exo-Higgs scenario?
- The Exo-Higgs is an extension of the SM that allows an EW-like baryogenesis.
- The EW baryogenesis is an attractive and testable way to generate a baryon-antibaryon asymmetry.
- The SM has all the ingredients for a successful baryogenesis, but not in the right quantities.

- What is the Exo-Higgs scenario?
- The Exo-Higgs is an extension of the SM that allows an EW-like baryogenesis.
- The EW baryogenesis is an attractive and testable way to generate a baryon-antibaryon asymmetry.
- The SM has all the ingredients for a successful baryogenesis, but not in the right quantities.
- To get around this, one can assume that a new gauge group breaks down at some scale \sim TeV and triggers the Baryogenesis.

• As a simple implementation of this idea, we assume the existence of $SU(2)_e$ gauge symmetry.

$SU(2)_e$ symmetry

- As a simple implementation of this idea, we assume the existence of $SU(2)_e$ gauge symmetry.
- The *exo*-symmetry is completely broken by the vev of a Higgs field η at some temperature

T > T(EWPT)

$SU(2)_e$ symmetry

- As a simple implementation of this idea, we assume the existence of $SU(2)_e$ gauge symmetry.
- The *exo*-symmetry is completely broken by the vev of a Higgs field η at some temperature

• SM fields are neutral under $SU(2)_e$, however there are (3 generations of) new fermions charged under this symmetry and the SM gauge group.

An interesting choice of quantum numbers for the new fermions is

$$egin{aligned} & \Omega_L = (2,3,1,-rac{1}{3}) & ; & 2 imes \Omega_R = (1,3,1,-rac{1}{3}) \ 2 imes \Lambda_L = (1,1,1,-1) & ; & \Lambda_R = (2,1,1,-1) \end{aligned}$$

under the $SU(2)_e \times SU(3) \times SU(2)_L \times U(1)_Y$ gauge group.

The fermions get their masses through Yukawa coupling to η .

The Lagrangian is the sum of three contributions:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_e + \mathcal{L}_m$$

The Lagrangian is the sum of three contributions:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_e + \mathcal{L}_m$$

We focus on the third piece:

$$\mathcal{L}_{m} = 2k_{\eta H}\eta^{\dagger}\eta H^{\dagger}H - Y_{\Omega q}\eta \bar{\Omega}_{L}d_{R} - Y_{q\Omega}H\bar{q}_{L}\Omega_{R} - \mathcal{M}_{\Lambda}\bar{\Lambda}_{L}e_{R}.$$

We impose that $k_{\eta H} v_{\eta}^2 = \mu_{H}^2$. This ties the EW symmetry breaking to the Exo symmetry breaking.

The Lagrangian is the sum of three contributions:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_e + \mathcal{L}_m$$

We focus on the third piece:

$$\mathcal{L}_{m} = 2k_{\eta H}\eta^{\dagger}\eta H^{\dagger}H - Y_{\Omega q}\eta \,\bar{\Omega}_{L}d_{R} - Y_{q\Omega}H\bar{q}_{L}\Omega_{R} - \mathcal{M}_{\Lambda}\bar{\Lambda}_{L}e_{R}.$$

We impose that $k_{\eta H} v_{\eta}^2 = \mu_{H}^2$. This ties the EW symmetry breaking to the Exo symmetry breaking.

At tree level the Lagrangian preserves B and L. However at one-loop level the B - L current is anomalous under $SU(2)_e$.

The B - L anomaly can lead to the generation of $\Delta(B - L) \neq 0$ if the $SU(2)_e$ breaking involves a strong first order phase transition.

Condition for a first order transition

$$\eta(T_c)/T_c \sim rac{3\,g_e^3}{16\pi\,\lambda_\eta}\gtrsim 1$$

The strong phase transition at a temperature of order 1 TeV implies gravitational wave signals that may be detectable by future space-based missions, such as LISA.

We introduce a new complex scalar χ that carries a good global charge $Q_{\chi} = +1$. We also demand that $\Lambda_{L,R}$ both have $Q_{\chi} = +1$. This forbids the $\mathcal{M}_{\Lambda}\bar{\Lambda}_{L}e_{R}$ mixing, and allows us to write

$$\lambda_\ell \chi \bar{\Lambda}_L \ell_R.$$

We will assume that χ is the lightest $Q_{\chi} \neq 0$ state, and so it will be a stable particle and a potential DM candidate. We add the new quartic interactions

$$\lambda_{\chi}(\chi^{\dagger}\chi)^{2}+2k_{\chi H}\chi^{\dagger}\chi H^{\dagger}H+2k_{\chi\eta}\chi^{\dagger}\chi\eta^{\dagger}\eta.$$

The mixed terms can in principle supply the required mass term for χ , after exo-spin and electroweak symmetry breaking.

Exo-baryogenesis generates $\Delta(B - L)$ in the *exo*-sector; Fast decay of *exo*-fermions injects $\Delta(B - L)$ into the SM and and net Q_{χ} charge into χ ; $\Delta(B - L)$ is processed into B and L by the EW sphaleron, χ particles stay stable since Q_{χ} is conserved.

Since $\chi\chi^*$ pairs annihilate efficiently through *t*-channel into leptons, and the number density of χ and baryons are tied, χ is required to have a particular mass m_{χ} .

Dark Matter Mass

We have the following relations for the chemical potentials:

$$\mu_{dR} = \mu_{\varsigma}, \quad \mu_{uL} = \mu_{\varsigma} + \mu_{0},$$

$$\mu_{iR} = \mu_{\Lambda} - \mu_{\chi}, \quad 3\mu_{\varsigma} - \mu_{\Lambda} = 0,$$

$$\sum_{i} (\mu_{iR} + \mu_{iL}) + 3(\mu_{dR} + \mu_{dL}) - 6(\mu_{uR} + \mu_{uL})$$

$$+12(\mu_{\Lambda} + \mu_{\varsigma}) - 2\mu_{0} = 0,$$

As a result

$$\Delta_{B-L}=rac{789}{19}\mu_{\Im},~~\Delta Q_{\chi}=rac{1008}{19}\mu_{\Im}.$$

After Δ_{B-L} is processed into ΔB we find

$$\frac{\Delta Q_{\chi}}{\Delta B} = \frac{1036}{263} \Rightarrow m_{\chi} \approx 1.3 \text{ GeV}.$$

First we set a benchmark scenario

m_η	=	$1.5{ m TeV}$	Mass of the η field
v_{η}	=	$2.5{\rm TeV}$	Vev of the η field
$m_{\rm q}^{h}$	=	$1.5{\rm TeV}$	Mass of the heaviest $\boldsymbol{\varrho}$
$m_{ m Q}^{l}$	\sim	$1{ m TeV}$	Mass of the lightest 9's
m_{Λ}	=	$1{ m TeV}$	Mass of A's
g _e	=	2	$SU(2)_e$ gauge coupling,

First we set a benchmark scenario						
	m_η	=	$1.5{\rm TeV}$	Mass of the η field		
	v_{η}	=	$2.5{\rm TeV}$	Vev of the η field		
	$m_{\rm q}^h$	=	$1.5{\rm TeV}$	Mass of the heaviest Ω		
	$m_{ m q}^{l}$	\sim	$1{ m TeV}$	Mass of the lightest Ω 's		
	m_{Λ}	=	$1{ m TeV}$	Mass of Λ's		
	<i>g</i> _e	=	2	$SU(2)_e$ gauge coupling,		

$$\mathcal{L}_{m} = 2k_{\eta H}\eta^{\dagger}\eta H^{\dagger}H - Y_{\Omega q}\eta \bar{\Omega}_{L}d_{R} - Y_{q\Omega}H\bar{q}_{L}\Omega_{R}$$

• induces changes in the Higgs couplings and FCNC operators.

*g*_e

First we set a benchmark scenario				
	m_η	=	$1.5{\rm TeV}$	Mass of the η field
	v_{η}	=	$2.5{\rm TeV}$	Vev of the η field
	$m_{\rm q}^{\rm h}$	=	$1.5{\rm TeV}$	Mass of the heaviest $\boldsymbol{\Omega}$
	$m_{\rm q}^{\tilde{l}}$	\sim	$1{ m TeV}$	Mass of the lightest Ω 's
	m_{Λ}	=	$1{ m TeV}$	Mass of Λ's

= 2

$$\mathcal{L}_{m} = 2k_{\eta H}\eta^{\dagger}\eta H^{\dagger}H - Y_{\Omega q}\eta \,\bar{\Omega}_{L}d_{R} - Y_{q\Omega}H\bar{q}_{L}\Omega_{R}$$

• induces changes in the Higgs couplings and FCNC operators.

•
$$k_{\eta H} v_{\eta}^2 = \mu_H^2 \to \tan(2\theta_{\eta H}) = \frac{4k_{\eta H} v_H v_\eta}{m_{\eta}^2 - m_H^2} \sim 7 \times 10^{-4}.$$

 $SU(2)_e$ gauge coupling,

First we set a benchmark scenario					
m	$\eta =$	$1.5{\rm TeV}$	Mass of the η field		
V_{r}	, =	$2.5{\rm TeV}$	Vev of the η field		
m	$_{\mathrm{Q}}^{h} =$	$1.5{\rm TeV}$	Mass of the heaviest $ m \Omega$		
$m_{\rm Q}^{\tilde{l}}$		$1{ m TeV}$	Mass of the lightest Y 's		
m	$\Lambda =$	$1{ m TeV}$	Mass of Λ's		
ge	, =	2	$SU(2)_e$ gauge coupling,		

$$\mathcal{L}_{m} = 2k_{\eta H}\eta^{\dagger}\eta H^{\dagger}H - Y_{\varsigma q}\eta \bar{\Omega}_{L}d_{R} - Y_{q\varsigma}H\bar{q}_{L}\Omega_{R}$$

- induces changes in the Higgs couplings and FCNC operators.
- $k_{\eta H} v_{\eta}^2 = \mu_H^2 \rightarrow \tan(2\theta_{\eta H}) = \frac{4k_{\eta H} v_H v_\eta}{m_{\eta}^2 m_H^2} \sim 7 \times 10^{-4}.$
- $\Omega \leftrightarrow q\eta$ and $\Omega \leftrightarrow qH$ in equilibrium at $T_c^e \Rightarrow Y_{\Omega q}, Y_{q\Omega} \gtrsim 10^{-4}$

Exo-fermion phenomenology

- The Ω's decay through three channels, Ω → tW⁻, Ω → bZ, and Ω → bH, with BR ~ 50%, ~ 25%, and ~ 25%, respectively.
- The bounds come from the searches for -1/3 vector-like quark.

- The Ω's decay through three channels, Ω → tW⁻, Ω → bZ, and Ω → bH, with BR ~ 50%, ~ 25%, and ~ 25%, respectively.
- The bounds come from the searches for -1/3 vector-like quark.
- Λ are mostly produced in pairs through Drell-Yan and can decay only through the process $\Lambda \to \chi \ell$.
- For $\Lambda \sim 1 \text{ TeV}$, the signal would be a pair of opposite-sign-same-flavor leptons, with $p_T \gtrsim$ a few hundred GeV, and a large missing E_T .
- Main background: $t\bar{t}$, W pair, and tW production. After cuts we can expect $\mathcal{O}(10)$ events at the 13 TeV LHC with 100 fb⁻¹.

• η is produced through gluon-fusion with \sim 10 fb at 13 ${\rm TeV}$

- η is produced through gluon-fusion with \sim 10 fb at 13 ${
 m TeV}$
- with a \sim 98% BR into gluons. The second largest ${\rm BR}\sim$ 0.4% is into photons \Rightarrow possible search at HL-LHC.

- η is produced through gluon-fusion with \sim 10 fb at 13 ${
 m TeV}$
- with a \sim 98% BR into gluons. The second largest ${\rm BR}\sim$ 0.4% is into photons \Rightarrow possible search at HL-LHC.
- Cross section of a pair of ω 's is completely irrelevant at LHC energies, while a 100 ${\rm TeV}$ collider could produce it with a \approx 5 fb cross section.

- The Exo-Higgs scenario is a possible extension of the SM that offers a frameworks for a EW-like baryogenesis.
- The model also allows a scalar asymmetric dark matter, whose mass is defined by structure of the model.
- Many possible signals at LHC.
- The strong phase transition could result in GW detectable at LISA.