##  <br> DRPID

## Electroweak Summary for ATLAS and CMS

 Shin-Chieh Hsu University of Washington October 112017

## Motivation for Electroweak measurements

- Confront the Standard Model in regions of complex calculations
- Higher order corrections
- Electroweak correction with (Next) Next Leading Order QCD
- Resummation techniques
- Merging of perturbative QCD and parton showers
- Constrain (or observe) new physics contributions via virtual corrections or modified gauge couplings
- Precision measurements of $W$ mass, $\sin ^{2} \theta_{\text {eff }}^{\text {lep }}$
- Anomalous Triple and Quartic gauge interactions
- Provide accurate and precise predictions of background rates for BSM searches and for Higgs measurements
- Vector Boson +jets or multi bosons often most important backgrounds
- tails of distributions and production with additional objects


## Standard Model cross-section measurements

Standard Model Production Cross Section Measurements
Thanks for spectacular performance of LHC which enables rare SM production measurements!


## Electroweak measurements

## W, Z properties <br> Diboson

September 2017
CMS Prelininary


All results http://cern.ch/go/pNj7

> In this talk, l'll highlight selected results from recent measurements.


## Gauge Sector of the Standard Model

- The mass of the W boson at leading order:

$$
m_{W} \sin ^{2} \theta_{W}=\frac{\pi \alpha}{\sqrt{2} G_{F}} \quad \sin ^{2} \theta_{W}=1-\frac{m_{W}^{2}}{m_{Z}^{2}}
$$

- Higher order correction $\Delta r$ from virtual loop :




## Inputs

$$
\begin{aligned}
\alpha & =1 / 137.035999139(31) \\
G_{F} & =1.16637(1) \times 10^{-5} \mathrm{GeV}^{-2} \\
m_{Z} & =91.1876(21) \mathrm{GeV}
\end{aligned}
$$

## W mass:

theory prediction is more precise than experimental measurement!

## W mass measurement

- Mass is determined by fitting lepton (7.8M e and $5.9 \mathrm{M} \mu$ ) $\mathrm{p}_{T}$ and transverse mass $\mathrm{m}_{T}$ with 7 TeV collisions. Huge efforts to understand detector response and modeling

$$
\mathrm{mW}=80370 \pm 19 \mathrm{MeV}=80370 \pm 7(\text { stat }) \pm 11(\text { syst }) \pm 14(\text { modelling }) \mathrm{MeV}
$$

PDG average $\mathrm{mW}=80385 \pm 15 \mathrm{MeV}$ (mainly CDF and D0)
SM prediction $\mathrm{mW}=80356 \pm 8 \mathrm{MeV}\left(\operatorname{arXiv}: 1407.3792\right.$ with updated $\mathrm{m}_{\mathrm{t}}$ and $\left.\mathrm{m}_{\mathrm{H}}\right)$

- ATLAS reaches precision equal to the best previous single measurement from CDF
- Further progress requires improving modeling (theory and W kinematics)




## Z forward backward asymmetry

- Weak mixing angle measured in forward-backward asymmetry ( $\mathrm{A}_{\mathrm{FB}}$ ) of $\mathrm{DY}\left(\mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}\right)$ events in 8 TeV collisions
- Z boost preferentially selects direction of valence quark
- Ambiguity of quark direction is more significant in low IYI
- $\sin ^{2} \theta_{\text {eff }}$ extracted by performing a fit to the $m_{\|}$and $Y$ dependence of $A_{F B}$
- pdf uncertainties also get constrained in the fit


Truth


Measured


## The Best $\sin ^{2} 6_{\text {eff }}^{\text {lep }}$ results at the LHC

- Competitive with Tevatron results, despite quark direction dilution

$$
\begin{aligned}
& \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=0.23101 \pm 0.00036 \text { (stat) } \pm 0.00018 \text { (syst) } \pm 0.00016 \text { (theory) } \pm 0.00030 \text { (pdf) } \\
& \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=0.23101 \pm 0.00052 .
\end{aligned}
$$

- Best measurements remain LEP+SLD: $\pm 0.00016$


Hadron Collider measurements

| Error (10-3) | Stat Syst PDF |  |  |
| :--- | ---: | ---: | ---: |
| CMS 8 TeV | 0.36 | 0.24 | 0.30 |
| ATLAS 7 TeV | 0.5 | 0.6 | 0.9 |
| LHCb $(\mu \mu)$ | 0.73 | 0.52 | $<0.56$ |
| D0 (ee only) | 0.43 | 0.08 | 0.17 |
| CDF | 0.43 | 0.07 | 0.16 |

- Uncertainties for LHC measurements will decrease as luminosity increases
- LHCb measures very forward rapidity (upto 4) - potentially measure high precision results.


## Electroweak boson couplings

Triple Gauge Coupling (TGC) $\cdot \mathrm{SU}_{\mathrm{L}}(2) \mathrm{XU}(1)_{Y}$ Gauge theory defines uniquely


Quartic Gague Coupling (QGC) Gauge Boson Couplings

- No other couplings allowed, e.g. no neutral TGC such as ZZZ
- Precise measurements in multi boson final states test the EW theory!
- NLO EW correction and NNLO QCD correction calculated



Total Xsec

$$
\sigma_{\text {meas }}=\frac{N_{\text {meas }}}{A C \mathcal{L}_{\text {int }}}
$$

where

$$
\begin{aligned}
& N_{\text {meas }}=N_{\text {obs }}-N_{\text {bkg }} \\
& \mathcal{L}_{\text {int }}=\text { integrated luminosit. }
\end{aligned} \quad A=\frac{N_{\text {tonal }}^{\text {gen. }}}{N_{\text {fiducial }}^{\text {gen. }}} .
$$

Fid Xsec

$$
\sigma_{\text {fid }}=\frac{N_{\text {meas }}}{C \mathcal{L}_{\text {int }}}
$$

$$
C=\frac{N_{\text {fiducial }}^{\text {gen }}}{N_{\text {fiducial }}^{\text {reco }}} \frac{\epsilon_{\text {Data }}}{\epsilon_{\mathrm{MC}}}
$$

$$
\begin{aligned}
& \text { the. + exp. } \\
& \text { uncertainty }
\end{aligned}
$$

Unfolded differential Xsec: detailed test of the SM gauge structure!

## Anomalous TGC and QGC

## Add terms to the SM Lagrangian with minimal constraint



$$
i \bar{g}_{1}^{V}\left(\mathcal{W}_{\mu \nu}^{+} \mathcal{W}^{-\mu}-\mathcal{W}_{\mu \nu}^{-} \mathcal{W}^{+\mu}\right) \mathcal{V}^{\nu}+i \bar{\kappa}_{V} \mathcal{W}_{\mu}^{+} \mathcal{W}_{\nu}^{-} \mathcal{V}^{\mu \nu}+i \frac{\bar{\lambda}_{V}}{\bar{M}_{W}^{2}} \mathcal{V}^{\mu \nu} \mathcal{W}_{\nu}^{+\rho} \mathcal{W}_{\rho \mu}^{-}, \quad(\mathrm{V}=\gamma \text { or } \mathrm{Z})
$$

Preserve unitarity using Form factor

$$
\zeta(\hat{s})=\frac{\zeta_{0}}{\left(1+\hat{s} / \Lambda_{F F}^{2}\right)^{n}}
$$

Moving to EFT: discussed under LHCEW WG

$$
L_{E F T}=L_{S M}+\sum_{i} \frac{C_{i}^{d}}{\Lambda^{d-4}} O_{i}^{d}
$$

Unitarization Form factor $\frac{1}{\left(1+\hat{s} / \Lambda_{\mathrm{FF}}^{2}\right)^{2}}$ or energy cut-off

- The adapted model assumes Dime8 operators only impact QGC with no effect on TGC example of Dim8 $\mathcal{L}_{E F T}=\mathcal{L}_{S M}+\sum_{j=1,2} \frac{f_{S, j}}{\Lambda^{4}} \mathcal{O}_{S, j}+\sum_{j=0, \ldots, 9} \frac{f_{T, j}}{\Lambda^{4}} \mathcal{T}_{T, j}+\sum_{j=0, \ldots, 7} \frac{f_{M, j}}{\Lambda^{4}} \mathcal{O}_{M, j}$
Constrain from multi-channels including VBS diboson production



## Diboson cross section

Diboson Cross Section Measurements
Status: July 2017

| September 2017 | CMS Preliminary |  |
| :---: | :---: | :---: |
| CMS measurements vs. NNLO (NLO) theory | 7 TeV CMS measurement (stat,stat+sys) <br> 8 TeV CMS measurement (stat,stat+sys) <br> 13 TeV CMS measurement (stat,stat+sys) | +o+ |
|  |  | $\mapsto \cdot \downarrow$ |
|  |  | $\mapsto \cdot+$ |
| $\gamma$ | $1.06 \pm 0.01 \pm 0.12$ | $5.0 \mathrm{fb}^{-1}$ |
| $\mathrm{W} \gamma$, (NLO th.) | $1.16 \pm 0.03 \pm 0.13$ | $5.0 \mathrm{fb}^{-1}$ |
| $\mathrm{Z} \gamma$, (NLOth.) | $0.98 \pm 0.01 \pm 0.05$ | $5.0 \mathrm{fb}^{-1}$ |
| $\mathrm{Z} \gamma$, (NLO th.) | $0.98 \pm 0.01 \pm 0.05$ | $19.5 \mathrm{fb}^{-1}$ |
| WW+WZ | $1.01 \pm 0.13 \pm 0.14$ | $4.9 \mathrm{fb}^{-1}$ |
| WW | $1.07 \pm 0.04 \pm 0.09$ | $4.9 \mathrm{fb}^{-1}$ |
| WW | $1.00 \pm 0.02 \pm 0.08$ | $19.4 \mathrm{fb}^{-1}$ |
| WW | $0.96 \pm 0.05 \pm 0.08$ | $2.3 \mathrm{fb}^{-1}$ |
| WZ | $1.05 \pm 0.07 \pm 0.06$ | $4.9 \mathrm{fb}^{-1}$ |
| WZ | $1.02 \pm 0.04 \pm 0.07$ | $19.6 \mathrm{fb}^{-1}$ |
| WZ $\quad$ • | $0.80 \pm 0.06 \pm 0.07$ | $2.3 \mathrm{fb}^{-1}$ |
| ZZ | $0.97 \pm 0.13 \pm 0.07$ | $4.9 \mathrm{fb}^{-1}$ |
| ZZ | $0.97 \pm 0.06 \pm 0.08$ | $19.6 \mathrm{fb}^{-1}$ |
| ZZ | $1.14 \pm 0.04 \pm 0.05$ | $35.9 \mathrm{fb}^{-1}$ |
| 0.5 <br> All results at: p://cern.ch/go/pNj7 | ross Section Ratio: | $\sigma_{\text {exp }} / \sigma_{\text {theo }}^{2}$ |


| $\gamma \gamma$ |
| :---: |
| $\begin{gathered} \mathrm{W} \gamma \rightarrow i v \gamma \\ -\left[\mathrm{n}_{\mathrm{jet}}=0\right] \end{gathered}$ |
| $\mathbf{Z} \boldsymbol{\gamma} \rightarrow \boldsymbol{\prime \prime} \boldsymbol{\gamma}$ |
| - [ $\left.\mathrm{n}_{\mathrm{jet}}=0\right]$ |
| $-\mathrm{Z} \gamma \rightarrow v r \gamma$ |
| $\begin{aligned} & \mathrm{WV} \rightarrow i v \mathrm{jj} \\ & -\mathrm{WV} \rightarrow i v \mathrm{~J} \end{aligned}$ |
| WW |
| $-W W W \rightarrow e \mu,\left[n_{j e t}=0\right]$ |
| $\begin{aligned} & -\mathrm{WW} \rightarrow \mathrm{e} \mu,\left[\begin{array}{l} \left.n_{\text {jet }} \geq 0\right] \\ -\mathrm{WW} \rightarrow \mathrm{e} \mu,[ \\ n_{j \mathrm{jet}}=1 \end{array}\right] \end{aligned}$ |
| WZ |
| $-W Z \rightarrow \ell v l t$ |
| ZZ |
| $-\mathrm{ZZ} \rightarrow 4 \boldsymbol{}$ |
| $-\mathbf{Z Z} \rightarrow$ lfvv |
| $-\mathrm{ZZ}{ }^{*} \rightarrow 4 \ell$ |



- Overall good agreement with the Standard Model
- NNLO improves agreement substantially
- NNLO reduces uncertainty to 10~20\% from NLO at 60\% (arXiv: 1604.08576) )
- Almost all recent measurements are limited by systematics uncertainties


## Disobey differential cross section

W . 0 or 1 jet analysis. Signal MC normalized to NNLO Xsec

- Systematic dominant analysis
$W$ • ~10\% uncertainty dominated by jet systematics

$$
\text { R/ } \begin{cases}Z & \begin{array}{l}
\text { Statistics and systematic } \\
\text { getting comparable at } 5 \%
\end{array} \\
\begin{array}{l}
\text { Dominant systematics is } \\
\text { lepton efficiency }
\end{array}\end{cases}
$$




## aTGC limits


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEW

Mostly statistics uncertainty dominated.
Largest systematic in all cases is on fake background model.


September 2017


## CMS Preliminary

© 7 TeV CMS measurement ( $\mathrm{L} \leq 5.0 \mathrm{fb}^{-1}$ )
Q 8 TeV CMS measurement ( $\mathrm{L} \leq 19.6 \mathrm{fb}^{-1}$ )

- 13 TeV CMS measurement ( $\mathrm{L} \leq 35.9 \mathrm{fb}^{-1}$ )
- Theory prediction
$\longleftarrow \ll$ CMS 95\%CL limits at 7, 8 and 13 TeV

Phys. Rev. D 90, 032008 (2014) arXiv:1704.00366

## $\mathbf{W W}_{\gamma}$ channel



## Vector Boson Fusion Vjj

LHC electroweak $X_{\mathrm{ij}}$ production measurements
 the control region.

## Vector Boson Scattering: VVjJ

- Measurements of the VBS process indirectly reflect/prove the SM Higgs mechanism and help searches for new physics in TeV scale.

VBS
non-VBS

EWK Signal

$+$

qq

gg


Topology: $\mathrm{VV}+2$ tagging high $\mathrm{p}_{\mathrm{T}}$ jets in the forward-backward regions with large $\mathrm{m}_{\mathrm{ij}}$, large rapidity gap and low hadronic activity in between.

## Observation of VBS

- First observation of VBS same-sign WW: a milestone study!
- First study of VBF ZZ: BDT discrimination of large QCD production


Yield ratio $(\mathrm{LO})=0.90 \pm 0.22$

$\sigma_{\text {fid. }}$ (EW pp $\left.\rightarrow \mathrm{ZZ} j i \rightarrow \ell \ell \ell^{\prime} \ell^{\prime} j i\right)$
$=0.40_{-0.16}^{+0.21}$ (stat. $)_{-0.09}^{+0.13}$ (syst.) fb

Some of the limits on the parameters $\mathrm{f} / \boldsymbol{\Lambda}^{4}$ are now $<1 \mathrm{TeV}^{-4}$

If one takes $\mathrm{f} \sim 1$ then $\Lambda>1 \mathrm{TeV}$ !


- Thanks for outstanding performance of LHC and experiments
- Rich program of precision measurements on differential distributions anticipated with larger datasets available, e.g. WW, ZZ, ..., etc.
- Precision measurements to constrain virtual corrections
- Competitive W mass measurements at the LHC
- Process on measurement of weak mixing angle
- Observation of exciting low cross section processes
- Measurements of many triboson and VBF channels
- $>5 \sigma$ observation of VBS process $\left(\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \mathrm{j}\right)$
- Multi-bosons analyses are precision tests of the state of the art of the theory :
- Cross-sections sensitive to NNLO QCD and NLO EWK
- Probe the EWK gauge structure of the SM : anomalous TGC and QGC

