Charmless Hadronic B decays from Belle

(Brookhaven Forum 2017: In Search of New Paradigms, October 11-13, 2017)

Vipin Gaur
Virginia Tech, USA
On behalf of the Belle collaboration

(1)VirginiaTech

This work supported by

Outline

Introduction
\square Study of

$$
\begin{array}{ll}
>\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm} & \text {PRD 96, 031101 (2017) } \\
>\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0} & \text { PRD 96, 032007 (2017) }
\end{array}
$$

DSummary

Recorded 772 million $B \bar{B}$ pairs
\square All analyses presented here are based on the full Belle data sample
\square Operated at the KEKB collider in Tsukuba, Japan (1999 - 2010)
\square Asymmetric beam energy at the $\curlyvee(4 \mathrm{~S})$ resonance ($8 \mathrm{GeV} \mathrm{e}^{-}$on $3.5 \mathrm{GeV} \mathrm{e}^{+}$)

Integrated luminosity of B factories

Analysis Technique

\square To identify B decays, two kinematic variables are used: $\Delta \mathrm{E}$ and M_{bc}

Energy difference

$$
\Delta E=\sum_{i} E_{i}-E_{b e a m}
$$

Beam-constrained mass

$$
M_{b c}=\sqrt{E_{\text {beam }}^{2}-\left|\sum_{i} \vec{p}_{i}\right|^{2}}
$$

Analysis Technique (contd.)

\square Continuum events are the primary source of background: $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s$ and $c) \rightarrow$ fragmentation \rightarrow hadrons as two back-to-back jets
\square To suppress this background, variables describing the event shape topology are combined in a multivariate analyzer, such as a neural network (NN) or a Fisher discriminant

\square Use an unbinned extended maximum likelihood (ML) fit based on different discriminating variables
\square The fit usually includes signal, continuum, charm and charmless B background components

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm}
$$

\square Mainly proceeds via $\mathrm{b} \rightarrow \mathrm{u}$ tree and $\mathrm{b} \rightarrow \mathrm{d}$ penguin diagrams
\square No intermediate state observed yet

Previous measurements:
$\mathrm{BF}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm}\right)=(5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$
PRL 99, 221801 (2007)
$\mathrm{A}_{\mathrm{CP}}=-0.123 \pm 0.017 \pm 0.012 \pm 0.007$
PRD 90, 112004 (2014) LHCh

A structure is seen by BaBar and LHCb in $\mathrm{K}^{+} \mathrm{K}^{-}$low invariant mass spectrum of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$and a large local CP asymmetry in the same mass region

Final state interactions may contribute to CP violation
PRD 89, 094013 (2014)

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm}$: Backgrounds

Continuum background
Continuum background suppression: Implement a NN based on 5 event-shape variables
\square A tight requirement on NN removes 99% of the continuum events while retaining 48% of the signal

NN selection requirement is optimized by maximizing a figure of merit

$$
\text { F.O. } M=\frac{N_{S}}{\sqrt{N_{S}+N_{B}}}
$$

Generic B backgroundArises due to B decays via the dominant $b \rightarrow c$ transition
\square
Charm veto to reject $\mathrm{b} \rightarrow \mathrm{c}$ backgrounds after investigating the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\mathrm{K}^{+} \pi^{-}$

Rare B background
\square Arises due to B decays in which one of the B decays via $b \rightarrow u, d, s$

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm}
$$

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{ \pm}$

\square An excess and a large CP asymmetry are seen in $\mathrm{M}_{\mathrm{K}^{+} \mathrm{K}^{-}}<1.5 \mathrm{GeV} / \mathrm{c}^{2}$, confirming the observations by BaBar and LHCb
\square We find a strong evidence of a large CP asymmetry of $-0.90 \pm 0.17 \pm 0.03$ with 4.8σ significance for $\mathrm{M}_{\mathrm{K}^{+} \mathrm{K}^{-}}<1.1 \mathrm{GeV} / \mathrm{c}^{2}$

$\mathrm{M}_{\mathrm{K}^{+} \mathrm{K}^{-}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$\mathrm{N}_{\text {sig }}$	Efficiency (\%)	$\mathrm{dBF} / \mathrm{dM}\left(\mathrm{x} 10^{-7}\right)$	A_{CP}
$0.8-1.1$	$59.8 \pm 11.4 \pm 2.6$	19.7	$14.0 \pm 2.7 \pm 0.8$	$-0.90 \pm 0.17 \pm 0.04$
$1.1-1.5$	$212.4 \pm 21.3 \pm 6.7$	19.3	$37.8 \pm 3.8 \pm 1.9$	$-0.16 \pm 0.10 \pm 0.01$
$1.5-2.5$	$113.5 \pm 26.7 \pm 18.6$	15.6	$10.0 \pm 2.3 \pm 1.7$	$-0.15 \pm 0.23 \pm 0.03$
$2.5-3.5$	$110.1 \pm 17.6 \pm 4.9$	15.1	$10.0 \pm 1.6 \pm 0.6$	$-0.09 \pm 0.16 \pm 0.01$
$3.5-5.3$	$172.6 \pm 25.7 \pm 7.4$	16.3	$8.1 \pm 1.2 \pm 0.5$	$-0.05 \pm 0.15 \pm 0.01$

\square Overall BF and A_{CP}

$$
\begin{gathered}
\mathrm{BF}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}\right)=(5.38 \pm 0.40 \pm 0.35) \times 10^{-6} \\
\mathrm{~A}_{\mathrm{CP}}=-0.182 \pm 0.071 \pm 0.016
\end{gathered}
$$

$$
\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}
$$

\square Proceeds via $\mathrm{b} \rightarrow \mathrm{u}$ tree and $\mathrm{b} \rightarrow \mathrm{d}$ penguin diagrams
Time dependent measurements of $B \rightarrow \pi \pi$ are sensitive to the UT angle ϕ_{2} / α
\square Among the $\mathrm{B} \rightarrow \pi \pi$ decays, BF and A_{CP} for $\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}$ are the least well determined
\square Previous measurements:

$$
\begin{gathered}
\mathrm{BF}=\left(2.3 \begin{array}{c}
{ }_{-0.5}^{+0.4}
\end{array}{ }_{-0.3}^{+0.2}\right) \times 10^{-6} \\
\mathrm{PRL} 94,181803(2005) \\
\mathrm{BF}=\left(1.83 \pm \begin{array}{l}
0.21 \pm 0.13) \times 10^{-6} \\
\\
\mathrm{PRD} 87,052009(2013)
\end{array}\left(467 \times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}\right)\right.
\end{gathered}
$$

Theory: quantum chromodynamics based factorization predicts BF below 1×10^{-6}

$$
\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}
$$

$\square 3 D$ fit to $\Delta E, M_{b c}$ and T_{c} (continuum suppression variable) with four components:
> Signal
> Continuum background
$>\mathrm{B}^{+} \rightarrow \rho^{+} \pi^{0}$
$>$ Other rare charmless

- b-flavor charge $\mathrm{q}:$ $\left[+1(-1)\right.$ tagging a $\left.B^{0}\left(\overline{\mathrm{~B}}^{0}\right)\right]$
- r: purity

Simultaneous fit to 14 bins in the flavor tagging variable ($\mathrm{q} \cdot \mathrm{r}$) for SVD1 (2)
$\square T_{c}$: Fisher discriminant of likelihood (Fox-Wolfram moments), cosine of the polar angle of the B candidate with respect to the z axis and cosine of the angle between the thrust axis of the B candidate and rest of the event in the CM frame

$$
\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}
$$

- Data are points with error bars

Full fit results
Signal
Continuum background
$\square \mathrm{B}^{+} \rightarrow \mathrm{\rho}^{+} \boldsymbol{\pi}^{0}$Other rare charmless \rfloor

Signal yield $=217 \pm 32$

$$
\mathrm{BF}\left(\mathrm{~B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.31 \pm 0.19 \pm 0.18) \times 10^{-6} \quad \mathrm{~A}_{\mathrm{CP}}=+0.14 \pm 0.36 \pm 0.12
$$

$$
\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}
$$

FPRD 87, 031103 (2012)
D BF and A_{CP} results for $\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}$ are combined with previous Belle results on $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$and $\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{0}$ to constrain ϕ_{2} employing isospin relations

B PRD 88, 092003 (2013)
PRL 65, 3381 (1990)
Confidence limit on ϕ_{2}
\square We exclude the CP violating parameter ϕ_{2} from the

------ Previous constraint from Belle Including our new results

Summary

\square Measured $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}\right)$is $(5.38 \pm 0.40 \pm 0.35) \times 10^{-6}$
$\square A_{C P}=-0.182 \pm 0.071 \pm 0.016$
\square An excess and a large CP asymmetry are seen in $\mathbf{M}_{\mathrm{K}^{+} \mathrm{K}^{-}}<1.5 \mathrm{GeV} / \mathrm{c}^{2}$, confirming the observations by BaBar and LHCb
\square We find a strong evidence of a large CP asymmetry of $-0.90 \pm 0.17 \pm 0.03$ with 4.8σ significance for $\mathrm{M}_{\mathrm{K}^{+} \mathrm{K}^{-}}<\mathbf{1 . 1} \mathrm{GeV} / \mathrm{c}^{2}$
\square Measured BF $\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$ is $(1.31 \pm 0.19 \pm 0.18) \times 10^{-6}(6.4 \sigma)$
$\square A_{\text {CP }}=+0.14 \pm 0.36 \pm 0.12$
\square We exclude the CP violating parameter ϕ_{2} from the range $15.5^{\circ}<\phi_{2}<75^{\circ}$ at 95% confidence

Introduction to CKM matrix

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

* CKM matrix describes the probability of a transition from one quark i to another quark j. These transitions are proportional to $\left|V_{i j}\right|^{2}$
* 3×3 Unitarity matrix $\Rightarrow 4$ independent parameters (1 irreducible phase)

Wolfenstein parameterization

$$
\begin{gathered}
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \quad \text { Unitarity } \mathrm{V}+\mathrm{V}=1 \\
\lambda=0.22, \mathrm{~A}=0.81, \rho=0.14 \text { and } \eta=0.35
\end{gathered}
$$

Fisher Discriminant

$$
\text { The variable: } \quad F=\sum_{i=1}^{N} \alpha_{i} x_{i}
$$

1. The discriminant F is a linear combination of the input variables x_{i} (such as FW moments)
2. Multi variables can be combined into a single variable
3. Project multi dimensional data onto one dimension (axis)
4. Find the axis (best set of α_{i}) to separate signal and background maximally

Fox Wolfram moments

