Charmless Hadronic B decays from Belle

(Brookhaven Forum 2017: In Search of New Paradigms, October 11-13, 2017)

Vipin Gaur

Virginia Tech, USA

On behalf of the Belle collaboration

This work supported by

Office of Science

Outline

□ Introduction

□ Study of $ightarrow B^{\pm} \rightarrow K^{+} K^{-} \pi^{\pm}$ PRD 96, 031101 (2017) $ightarrow B^{0} \rightarrow \pi^{0} \pi^{0}$ PRD 96, 032007 (2017)

Summary

 \Box Recorded 772 million BB pairs

All analyses presented here are based on the full Belle data sample Operated at the KEKB collider in Tsukuba, Japan (1999 – 2010)

Asymmetric beam energy at the Υ(4S) resonance (8 GeV e⁻ on 3.5 GeV e⁺)

Integrated luminosity of B factories

Analysis Technique

 \Box To identify *B* decays, two kinematic variables are used: ΔE and M_{bc}

Energy difference

$$\Delta E = \sum_{i} E_{i} - E_{beam}$$

Beam-constrained mass

$$M_{bc} = \sqrt{E_{beam}^2 - |\sum_i \vec{p}_i|^2}$$

 P_i and E_i are the momentum and energy of i^{th} daughter of the reconstructed *B* meson in the CM frame

Analysis Technique (contd.)

- □ Continuum events are the primary source of background: $e^+e^- \rightarrow q\bar{q}$ (q = u, d, s and c) \rightarrow fragmentation \rightarrow hadrons as two back-to-back jets
- To suppress this background, variables describing the event shape topology are combined in a multivariate analyzer, such as a neural network (NN) or a Fisher discriminant

Use an unbinned extended maximum likelihood (ML) fit based on different discriminating variables

□ The fit usually includes signal, continuum, charm and charmless B background components

- $\hfill \hfill \hfill$
- □ No intermediate state observed yet
- □ Previous measurements:

$$BF(B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}) = (5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$$

$$PRL 99, 221801 (2007)$$

$$A_{CP} = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$$

$$PRD 90, 112004 (2014)$$

- □ A structure is seen by BaBar and LHCb in K^+K^- low invariant mass spectrum of $B^+ \rightarrow K^+K^-\pi^+$ and a large local CP asymmetry in the same mass region
- □ Final state interactions may contribute to CP violation

PRD **89**, 094013 (2014)

$B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$: Backgrounds

Continuum background

- Continuum background suppression: Implement a NN based on 5 event-shape variables
- □ A tight requirement on NN removes 99% of the continuum events while retaining 48% of the signal

NN selection requirement is optimized by maximizing a figure of merit

$$F. O. M = \frac{N_S}{\sqrt{N_S + N_B}}$$

Generic B background

- $\hfill\square$ Arises due to B decays via the dominant $b \rightarrow c$ transition
- □ Charm veto to reject $b \rightarrow c$ backgrounds after investigating the K^+K^- and $K^+\pi^-$

Rare B background

 $\hfill \hfill Arises due to B decays in which one of the B decays via <math display="inline">b \rightarrow u, \, d, \, s$

Fit components:
 Signal, continuum background, generic B
 background and rare B background

 $\hfill\square$ Signal and A_{CP} are fitted in M_{KK} bins

□ The overall results are obtained by integrating over the whole M_{KK} region

We obtain

Signal yield = 715 ± 48

VIPIN GAUR [Virginia Tech, USA]

 \Box An excess and a large CP asymmetry are seen in $\rm M_{K^+K^-}<1.5~GeV/c^2$, confirming the observations by BaBar and LHCb

 \Box We find a strong evidence of a large CP asymmetry of $-0.90\pm0.17\pm0.03$ with 4.8σ significance for $M_{K^+K^-}<1.1~GeV/c^2$

$M_{K^{+}K^{-}} (GeV/c^{2})$	N _{sig}	Efficiency (%)	dBF/dM (x10 ⁻⁷)	A _{CP}
0.8-1.1	59.8±11.4±2.6	19.7	14.0±2.7±0.8	-0.90±0.17±0.04
1.1-1.5	212.4±21.3±6.7	19.3	37.8±3.8±1.9	-0.16±0.10±0.01
1.5-2.5	113.5±26.7±18.6	15.6	10.0±2.3±1.7	-0.15±0.23±0.03
2.5-3.5	110.1±17.6±4.9	15.1	10.0±1.6±0.6	-0.09±0.16±0.01
3.5-5.3	172.6±25.7±7.4	16.3	8.1±1.2±0.5	-0.05±0.15±0.01

 $\hfill\square$ Overall BF and A_{CP}

BF (B⁺ \rightarrow K⁺K⁻ π^+) = (5.38 ± 0.40 ± 0.35) x 10⁻⁶ A_{CP} = -0.182 ± 0.071 ± 0.016

$$B^0 \rightarrow \pi^0 \pi^0$$

 $\hfill\square$ Proceeds via $b \to u$ tree and $b \to d$ penguin diagrams

- $\hfill \begin{tabular}{ll} \hline \hfill \begin \begin{tabular}{ll} \hline \hfill \begin{tabular}{ll} \hline \hfill$
- $\hfill Among the B \to \pi\pi$ decays, BF and A_{CP} for $B^0 \to \pi^0\pi^0$ are the least well determined

□ Previous measurements:

 $\hfill\square$ Theory: quantum chromodynamics based factorization predicts BF below $1 \ge 10^{-6}$

PRD **73**, 114014 (2006) PRD **83**, 034023 (2011)

$$B^0 \rightarrow \pi^0 \pi^0$$

 \square 3D fit to ΔE , M_{bc} and T_{c} (continuum suppression variable) with four components:

 $\hfill\square$ Simultaneous fit to 14 bins in the flavor tagging variable (q • r) for SVD1 (2)

□ T_c: Fisher discriminant of likelihood (Fox-Wolfram moments), cosine of the polar angle of the B candidate with respect to the z axis and cosine of the angle between the thrust axis of the B candidate and rest of the event in the CM frame

$$B^0 \rightarrow \pi^0 \pi^0$$

Signal enhanced projection plots

.0 MeV/c²) $\overline{{\bm B^0}} \to \pi^0 \pi^0$ $\overline{{\bm B^0}}\,\rightarrow\,\pi^0\pi^0$ Events/(3.3 MeV) B^0 $\rightarrow \pi^0 \pi^0$ Data are points with error bars ٠ Events/(0.09) **Given Set Up** Full fit results ٥j Events/(60ŧ **Gignal** 40 Continuum background -0.3 -0.2 -0.1 0 0.1 ∆ E (GeV) 0-0.2 0 0.2 0.4 0.6 0.8 Tc 5.27 5.28 M_{bc} (GeV/c²) 5.26 0.2 5.29 $\Box \ B^+ \to \rho^+ \pi^0$ **Other rare charmless** 00 WeV/c³ WeV/c³ 40 Events/(3.3 MeV) $\bm{B^0} \to \pi^0 \pi^0$ $\bm{B^0}\,\rightarrow\,\pi^0\pi^0$ $B^0\,\rightarrow\,\pi^0\pi^0$ (60) 12 (2.0 Events/(0. Events/ 10 60 Signal yield = 217 ± 32 0-0.2 0 0.20.40.60.8 Tc -0.3-0.2 -0.1 0 Δ E (GeV) 5.27 5.28 M_{bc} (GeV/c²) 5.29 0.1 5.26 0.2 $BF(B^0 \to \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.18) \ge 10^{-6}$ $A_{CP} = +0.14 \pm 0.36 \pm 0.12$

$$B^{0} \rightarrow \pi^{0} \pi^{0}$$

$$BF \text{ and } A_{CP} \text{ results for } B^{0} \rightarrow \pi^{0} \pi^{0} \text{ are combined with previous Belle results on } B^{0} \rightarrow \pi^{+}\pi^{-} \text{ and } B^{+} \rightarrow \pi^{+}\pi^{0} \text{ to constrain } \varphi_{2} \text{ employing isospin relations}$$

$$PRL 65, 3381 (1990)$$

$$Contidence limit on \phi_{2}$$

$$O_{2} = 0$$

14

Summary

□ Measured BF (B⁺ → K⁺K⁻π⁺) is (5.38 ± 0.40 ± 0.35) x 10⁻⁶ □ A_{CP} = -0.182 ± 0.071 ± 0.016

 \Box An excess and a large CP asymmetry are seen in $M_{K^+K^-}<1.5~GeV/c^2$, confirming the observations by BaBar and LHCb

 \Box We find a strong evidence of a large CP asymmetry of $-0.90\pm0.17\pm0.03$ with 4.8σ significance for $M_{K^+K^-}<1.1~GeV/c^2$

□ Measured BF $(B^0 \rightarrow \pi^0 \pi^0)$ is $(1.31 \pm 0.19 \pm 0.18) \times 10^{-6}$ (6.4 σ) □ A_{CP} = +0.14 ± 0.36 ± 0.12 □ We exclude the CP violating parameter ϕ_2 from the range 15.5° < ϕ_2 < 75° at 95% confidence

Introduction to CKM matrix

CKM matrix describes the probability of a transition from one quark i to another quark j. These transitions are proportional to $|V_{ij}|^2$ 3×3 Unitarity matrix $\Rightarrow 4$ independent parameters (1 irreducible phase)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Unitarity V⁺V=1

/

Wolfenstein parameterization

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 λ = 0.22, A = 0.81, ρ = 0.14 and η = 0.35

Fisher Discriminant

The variable:
$$F = \sum_{i=1}^{N} \alpha_i x_i$$

1. The discriminant F is a linear combination of the input variables x_i (such as FW moments)

2. Multi variables can be combined into a single variable

3. Project multi dimensional data onto one dimension (axis)

4. Find the axis (best set of α_i) to separate signal and background maximally

Fox Wolfram moments

