Dark Sector Searches with LDMX

David Hitlin Caltech for the LDMX Collaboration

> Brookhaven Forum October 11, 2017

Direct detection and accelerators

- Accelerators are well-positioned to directly probe annihilating thermal LDM
 - Lighter dark sector masses are more difficult to access the coupling must be much lower, which makes it difficult to produce in a collider
 - Fixed-target configurations are likely the way to get large-enough luminosities

David Hitlin

Accelerator approaches

David Hitlin

Accelerator experiments can explore the physics in detail ($\epsilon, m_{A'}, m_{\chi}, \alpha_{D}$), while direct detection is needed to establish cosmological stability

Brookhaven Forum

Current constraints

- Some assumptions are needed to plot constraints from missing mass/momentum/energy experiments
- We choose very conservative parameters: $\alpha_{\rm D} = 0.5$ and $m_A/m_{\gamma} = 3$.
- These parameters lead to the weak(est) constraints For smaller values of $\alpha_{\rm D}$ or larger mass ratio, the constraints are stronger, while the targets are invariant

A simple LDM scenario

Invisible decays $m_{A'}/m_{\chi}$ = 3, $\alpha_{\rm D}$ = 0.5

Izaguirre, Krnjaic, Schuster, Toro 1505.00011

Constraints from various measurements vary with $\alpha_{\rm D}$ and the $m_{A'}/m_{\chi}$ mass ratio

Some constraints vary significantly with the type of dark matter The full thermal relic target coupling may not be covered by a single experiment

A simple LDM scenario

If $2m_{\chi} > m_{A'} > m_{\chi}$, A' decays visibly

The constraints from visible decays come into play Future experiment will probe some of the remaining parameter space

Missing energy/momentum kinematics

The kinematics are quite different from ordinary bremsstrahlung emission

David Hitlin

Bremsstrahlung is suppressed by factor ~30 in the signal region

 E_e [GeV]

The A' is emitted at low angle and carries most of the energy

Signature: large missing energy; soft recoil electron

Brookhaven Forum

Recoil energy, 4 GeV e- on 10% X₀ target

Oct. 11, 2017

Missing energy/momentum kinematics

Recoil p_T , 4 GeV *e*- on 10% Xo target

The kinematics are quite different from ordinary bremsstrahlung emission

David Hitlin

Clear separation from bremsstrahlung background

The A' is emitted at low angle and carries most of the energy

- Signature: large missing energy; soft recoil electron
- large missing p_T: recoil electron is emitted at a large angle

Missing energy / momentum

ECAL/HCAL

Missing energy:

- Higher signal yields / EOT
- Greater acceptance
- Backgrounds beyond 10¹⁴ EOT might require *e*-γ identification

Missing momentum:

- Reconstruct outgoing electron, better bkg rejection
- $p_{\rm T}$ spectrum sensitive to m_A / m_{χ}
- Lower signal yield / ETO

A missing momentum experiment can also make a missing energy measurement

The LDMX concept

- Signal is a low energy, moderate p_{T} electron and an otherwise empty calorimeter in an event initiated by a full-energy beam electron
 - Recoil p_{T} between ~80 MeV and 800 MeV
- Backgrounds come from hard interactions in the target (*e.g.*, bremsstrahlung)

David Hitlin

 Challenging backgrounds arise from forward photons having a photonuclear interaction

$$\gamma + n \rightarrow n \overline{n} n \quad \gamma + p \rightarrow \pi^+ n \quad \gamma + N \rightarrow N \pi^+ \pi^-$$

Backgrounds

LDMX: a missing momentum design

Beam time structure must allow reconstruction of each individual incident electron event

- A multi-GeV, low-current, high repetition rate (CW) (10^{16} EOT/year $\approx 1e^{-}$ / 3 ns) beam with a large beam spot to spread the occupancy/radiation dose
- Candidate beams: DASEL @ SLAC (4/8 GeV) and CEBAF @ JLab (up to 12 GeV)

Detector technology with high rate capabilities and high radiation tolerance

- Fast, low mass tagger/recoil tracker with good momentum resolution to tag each electron
- Fast, granular, radiation hard EM calorimeter
- Highly efficient hadronic veto calorimeter

LDMX has will realize these design requirements in two phases: Phase I with 10^{14} EOT ($1e^{-}/25$ ns), and Phase II with 10^{16} EOT ($1e^{-}/3$ ns)

David Hitlin

Brookhaven Forum

LDMX conceptual design

- Dual purpose Magnet and Tracking System
- Collimated precision tagger tracker in full field \rightarrow 10% X_{O} target \rightarrow compact precision recoil tracker in the fringe field
- Si-W sampling calorimeter (ECAL)
- $40 X_0$, 30 Layers, 7 modules per layer of high efficiency, high granularity calorimetry
- Scintillator-High Z sampling calorimeter (HCAL) behind and around ECAL
 - Veto any event with hadronic activity

David Hitlin

Brookhaven Forum

LDMX tracker systems

There are two tracking systems:

- A tagging tracker to measure the incoming e^-
- A recoil tracker to measure the scattered *e*⁻ Conventional **dipole magnet** w/ two field regions
 - The tagging tracker is placed in the central region for $p_e = 4$ GeV,
 - The recoil tracker in the fringe field for $p_e \approx 50 1200 \text{ MeV}$

The silicon tracker design is similar to the HPS SVT

- Fast (2ns hit time) and radiation hard There is a tungsten target between the two trackers
 - 0.1-0.3 X₀ thickness to optimize signal rate vs. momentum resolution
 - There are scintillator pads at the back of the target to veto empty events
 - An active radiator target is also being investigated

David Hitlin

Oct. 11, 2017

14

Tracker performance

The tracker has good acceptance, limited at high masses by kinematics, Recoil momentum resolution is limited by multiple Coulomb scattering in the target

David Hitlin

Brookhaven Forum

15

Electromagnetic calorimeter

The electromagnetic calorimeter is a Si-W sampling device

- Fast, dense and radiation hard
- 40 X₀ deep for shower containment
- High granularity, to exploit transverse & longitudinal shower shapes to reject background events
- Can provide fast trigger

The ECAL is based on technology currently being developed for the CMS upgrade, which is readiliy adaptable to LDMX

High granularity enables muon/electron discrimination, which is important to reject $\gamma \rightarrow \mu\mu$ background

16

David Hitlin

Brookhaven Forum

Electromagnetic calorimeter

Preliminary studies show that even without using shower shape, the ECAL can distinguish EM background (4 GeV $e^-+\gamma$) from signal ($E_e < 1.2$ GeV) at the level required for Phase I

ECAL performance can be further improve the by the use of shower shape information

David Hitlin

Brookhaven Forum

Hadronic veto calorimeter

High Z/plastic scintillator sampling calorimeter

- The HCAL veto surrounds the ECAL, in order to intercept wide angle bremsstrahlung and other EM energy that escapes the ECAL
- Must be efficient for hadrons from photonuclear events, in particular events having several hard neutrons (e.g γ n → nnn) or many soft neutrons
- Studies are on-going to optimize the absorber material (steel, uranium), scintillator thickness and general layout
- Scintillator read out: WLS fibers and SiPMs
- Detailed studies will also determine the HCAL transverse and longitudinal dimensions
 - We currently simulate a very large volume that will be reduced to a practical size when the ECAL veto has been optimized

18

Trigger

Trigger system requirements

- Reject beam-energy backgrounds (noninteracting e⁻, bremsstrahlung,...)
- Sum energies of the first 20 layers of the ECAL
- Suppress empty events (w/ scintillator behind the target)
- Have a signal efficiency 50-100% with 10⁻⁴ background rejection

Sum of the energies of the first 20 layers of ECAL with recoil electron E < 1.2 GeV

Oct. 11, 2017

19

Photonuclear background and muon pairs

- Two example backgrounds originating in the target, recoil tracker or ECAL
 - Photonuclear reactions
 - Muon pair production
- These must be **efficiently vetoed**

Geant4 is not well-tuned to the (sparse) existing data for these reactions

- Energy/angle spectra from data suggests that photonuclear rates may be overestimated by orders of magnitude.
- The rate of $\gamma \rightarrow \mu^+ \mu^-$ events with very large momentum transfer q^2 is also overestimated

We are working on improving our understanding of these type of events and validating the simulation

An initial veto using information from each subdetector eliminates all but a few photonuclear events with extremely large momentum transfer to the nucleus at ~10¹³ EOT and $\mu\mu$ events with ~10¹⁴ EOT

David Hitlin

Sensitivity estimates

Phase I 10¹⁴ EOT @ 4 GeV probes scalar, Majorana and scalar inelastic DM Phase II 10¹⁶ EOT @ 8 GeV probes Pseudo-Dirac DM

David Hitlin

Brookhaven Forum

Oct. 11, 2017

Sensitivity estimates

LDMX has unprecedented sensitivity, surpassing existing and projected constraints for DM masses below a few hundred MeV.

David Hitlin

Brookhaven Forum

Oct. 11, 2017

22

Sensitivity estimates

David Hitlin

LDMX can also explore DM with quasi-thermal origins, *e.g.* asymmetric DM or SIMP/ELDER scenarios, and improve the sensitivity on invisible A' decays

Other interesting possibilities

LDMX would also be sensitive to:

- New mediators decaying invisibly
- Displaced vertex signature from 'DM co-annihilation' models
- Displaced vertex signature from SIMP models

David Hitlin

• Milli-charge particles

And could perform photonuclear & electronuclear measurements useful for future neutrino experiments.

LDMX Schedule

Schedule and Budget

Anticipate 2 years to complete design + 2 years for construction Phase I Run beginning in late 2021. Phase 2 two years later. Details depend upon accelerator schedules.

DASEL Schedule

DASEL

Conclusion

The thermal relic paradigm is arguably one of the most compelling DM candidates and the regime below the weak scale is the place to search – this is logical extension of the now highly-constrained WIMP idea

Accelerator based experiments are in the best position to decisively test all of the most straightforward scenarios of light dark matter – and, together with direct detection experiments, could reveal much of the underlying dark sector physics

Among potential approaches, missing energy/momentum experiments provide the best sensitivity for a given luminosity

LDMX would offer, at a reasonable cost, unprecedented sensitivity to light DM, surpassing all existing and projected constraints by orders of magnitude for DM masses below a few hundred MeV

LDMX can also provide photonuclear & electronuclear measurements useful for planned neutrino experiments

David Hitlin

Callec