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Direct detection targets Accelerator targets
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* Accelerators are well-positioned to directly probe annihilating thermal LDM
e Lighter dark sector masses are more difficult to access — the coupling must be
much lower, which makes it difficult to produce in a collider
* Fixed-target configurations are likely the way to get large-enough luminosities

e
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Accelerator experiments can explore the physics in detail (s,mA,,mX,aD),
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while direct detection is needed to establish cosmological stability
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Pseudo—Dirac Thermal DM
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* Some assumptions are needed to plot constraints from
missing mass/momentum/energy experiments

* We choose very conservative parameters: o, = 0.5 and mA/mx = 3.

* These parameters lead to the weak(est) constraints
For smaller values of ¢ or larger mass ratio, the constraints are stronger, while the
targets are invariant
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Invisible decays my/m, =3, ap = 0.5
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Constraints from various measurements vary with ap, and the m/m, mass ratio

Some constraints vary significantly with the type of dark matter
The full thermal relic target coupling may not be covered by a single experiment
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If 2m, > my > m,, A’ decays visibly

Pseudo—Dirac Fermion DM (Visibly Decaying 4")
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The constraints from visible decays come into play
Future experiment will probe some of the remaining parameter space
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Recoil energy,
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The kinematics are quite different from ordinary Bremsstrahlung is suppressed by
bremsstrahlung emission factor ~30 in the signal region

The A’ is emitted at low angle and carries most of the energy
e Signature: large missing energy; soft recoil electron
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The kinematics are quite different from ordinary Clear separation from
bremsstrahlung emission bremsstrahlung background

The A’ is emitted at low angle and carries most of the energy
e Signature: large missing energy; soft recoil electron
large missing p;: recoil electron is emitted at a large angle
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Target/ECAL/HCAL ECAL/HCAL

Missing energy: Missing momentum:

e Higher signal yields / EOT e Reconstruct outgoing electron,

» Greater acceptance better bkg rejection

 Backgrounds beyond 10 EOT * pPrspectrum sensitive to mA,/mx
might require e-y identification e Lower signal yield / ETO

A missing momentum experiment can also make a missing energy measurement
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Tagging Recoll Calorimeter
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- Signal is a low energy, moderate p. electron and an
otherwise empty calorimeter in an event initiated by

a full-energy beam electron
- Recaoll p; between ~80 MeV and 800 MeV

- Backgrounds come from hard interactions in the

target (e.g., bremsstrahlung)
- Challenging backgrounds arise from forward

photons having a photonuclear interaction
y+n-onan y+p-ontn y+N->Nntn~
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Electromagnetic
BER Calorimeter
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Beam time structure must allow
reconstruction of each individual incident
electron event

e A multi-GeV, low-current, high repetition rate (CW)

(10%® EOT/year = 1€~/ 3 ns) beam with a large beam spot to spread the occupancy/radiation dose
e Candidate beams: DASEL @ SLAC (4/8 GeV) and CEBAF @ JLab (up to 12 GeV)

Detector technology with high rate capabilities and high radiation tolerance
* Fast, low mass tagger/recoil tracker with good momentum resolution to tag each electron

e Fast, granular, radiation hard EM calorimeter
e Highly efficient hadronic veto calorimeter

LDMX has will realize these design requirements in two phases:
Phase | with 10'* EOT (1e7/25 ns), and Phase Il with 1016 EOT (1e7/3 ns)
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aghe SSN

m Dual purpose Magnet and Tracking System

- Collimated precision tagger tracker in full field - 10% X, target — compact precision
recoil tracker in the fringe field

m Si-W sampling calorimeter (ECAL)
- 40 X, 30 Layers, 7 modules per layer of high efficiency, high granularity calorimetry

m Scintillator-High Z sampling calorimeter (HCAL) behind and around ECAL

) Veto any event with hadronic activity -




There are two tracking systems:

e A tagging tracker to measure the incoming e~
e Arecoil tracker to measure the scattered e~
Conventional dipole magnet w/ two field regions

* The tagging tracker is placed in the central
region for p, = 4 GeV,
e The recoil tracker in the fringe field for
P, ~ 50—-1200 MeV
The silicon tracker design is similar to the HPS SVT
e Fast (2ns hit time) and radiation hard
There is a tungsten target between the two trackers P .'?89:,}6 Dipole Field
e 0.1-0.3 X, thickness to optimize signal rate vs. g
momentum resolution
e There are scintillator pads at the back of
the target to veto empty events
* An active radiator target is also being
investigated

Field Strength (kGauss)
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Acceptance for recoil electrons
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The tracker has good acceptance,
limited at high masses by kinematics,
Recoil momentum resolution is limited

by multiple Coulomb scattering in the target

l h -\ ”
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The electromagnetic calorimeter is a Si-W sampling device

e Fast, dense and radiation hard

e 40 X, deep for shower containment

* High granularity, to exploit transverse & longitudinal
shower shapes to reject background events

e Can provide fast trigger

The ECAL is based on technology currently being developed
for the CMS upgrade, which is readiliy adaptable to LDMX

e A S
32 GeV

FNALTB Data

High granularity enables
muon/electron discrimination,
which is important to reject
y— uu background
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Preliminary studies show that even without using shower shape, the ECAL
can distinguish EM background (4 GeV e+ y) from signal (E, < 1.2 GeV)
at the level required for Phase |

ECAL performance can be further improve the by the use of shower shape information
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Hadroni jori i

High Z/plastic scintillator sampling calorimeter e

e The HCAL veto surrounds the ECAL, in order Magnet
to intercept wide angle bremsstrahlung and
other EM energy that escapes the ECAL

* Must be efficient for hadrons from
photonuclear events, in particular events
having several hard neutrons (e.g ¥ n — nnn)
or many soft neutrons
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Trigger system requirements

Reject beam-energy backgrounds (non-

interacting €, bremsstrahlung,...)

Sum energies of the first 20 layers of the ECAL '
Suppress empty events (w/ scintillator behind

the target)

Have a signal efficiency 50-100% with 10 10*

background rejection
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Two example backgrounds originating in the

pz of recoiling nucleus

. =
target, recoil tracker or ECAL Qo
* Photonuclear reactions Sl
¢ Muon pair production S i
. o #* 7
 These must be efficiently vetoed
. . . not vetoed 5 GeV ¢ on Pb
Geant4 is not well-tuned to the (sparse) existing K op= 100°
data for these reactions

Energy/angle spectra from data suggests that
photonuclear rates may be overestimated by
orders of magnitude.
The rate of y— u*u events with very large
momentum transfer g2 is also overestimated

We are working on improving our understanding of
these type of events and validating the simulation

Events/8x10' EOT
<,

An initial veto using information from each sub- i
detector eliminates all but a few photonuclear events
with extremely large momentum transfer to the

nucleus at ~10'3 EOT and uu events with ~1014 EQT
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Phase | 10'* EOT @ 4 GeV probes scalar, Majorana and scalar inelastic DM
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Phase Il 10'® EOT @ 8 GeV probes Pseudo-Dirac DM
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Scalar elastic DM (Kinetic Mixing) Secalar Inelastic DM (Kinetic Mixing)
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LDMX has unprecedented sensitivity, surpassing existing and projected
constraints for DM masses below a few hundred MeV.
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QuatiThednal U (R hetic Mg Invisible Mediator Sensitivity (dashed lines assume ap = 0.5)
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LDMX can also explore DM with quasi-thermal origins, e.g. asymmetric DM or SIMP/ELDER
scenarios, and improve the sensitivity on invisible A’ decays
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LDMX would also be sensitive to:

* New mediators decaying invisibly

* Displaced vertex signature from 'DM co-annihilation' models
e Displaced vertex signature from SIMP models

e Milli-charge particles

And could perform photonuclear & electronuclear measurements useful for future neutrino
experiments.
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Schedule and Budget

Anticipate 2 years to complete design + 2 years for construction
Phase | Run beginning in late 202 1. Phase 2 two years later.

Details depend upon accelerator schedules.

FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24

DMX Final Desier
JVIA dal LesIgn
I S LR =
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FY19 20 21 22 23 24 25
wsops  lasops - wsos
Build .
LCLSHI Installation SRF Down SRF Down
Commissioning
4 GeV LCLS1 OPS 4 GeV LCLS-Il OPS 4 GeV LCLS-1l OPS 8 GeV LCLS-II HE OPS
Scenario 1 e ﬂ
(early FY20 project Project fund|ng DASEL Ops | ~ DASELOps
start)
Scenario 2 _‘nllslu.l:ol\msslon
(mid-FY20 project -— r sro——————e —>  commisionops |
Project funding oaseLops
start)
Scenario 3
(early|FY21 project P .
. ) .~ DASELOps
start) Project funding
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End Station A

DASEL

Existing
A Line

LDMX

e DASEL is a proposed new beamline at LCLS-II at SLAC

* Makes use of RF buckets that are not used by the FEL -
..................................... | Z completely parasitic

’ e Built largely of existing beamline components

LCLS e Can provide the intensity and time structure required by

e Also provides a useful general purpose test beam,

| DASEL Kicker i ' providing a high rate of single electrons

— existing LCLS
— existing ESA
— DASEL proposal
. “" ”
La.ser system to fill “unused” buckets FEL and DASEL
with electrons for DASEL bunches from RF gun

Experimental Facilities
* Small upgrades to ESA systems

DASEL Beamline connecting to ESA line
* 3 dipoles & 14 quads (all refurbished)

l DASEL

ESA

I | LCLS-II SCRF Linac |

LCLS-Il beamlines

\ I I ‘_l BSY dump
Ead
/ I I . | Soft X-Ray FEL

I I e
| Hard X-Ray FEL

DASEL kicker/septum system
downstream of FEL kickers to
eliminate interference

* Based on LCLS-II design

Tor Raubenheimer
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The thermal relic paradigm is arguably one of the most compelling DM candidates and the
regime below the weak scale is the place to search — this is logical extension of the now
highly-constrained WIMP idea

Accelerator based experiments are in the best position to decisively test all of the most
straightforward scenarios of light dark matter — and, together with direct detection
experiments, could reveal much of the underlying dark sector physics

Among potential approaches, missing energy/momentum experiments provide the best
sensitivity for a given luminosity

LDMX would offer, at a reasonable cost, unprecedented sensitivity to light DM, surpassing

all existing and projected constraints by orders of magnitude for DM masses below a few
hundred MeV

LDMX can also provide photonuclear & electronuclear measurements useful for planned
neutrino experiments

e
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