Dark Sector Searches
with BABAR

David Hitlin
Caltech
for the BABAR Collaboration

Brookhaven Forum
October 11, 2017
Since I will be giving two consecutive talks, the first on
• Dark Sector Searches with *BABAR*
and the second on
• Dark Sector searches with LDMX,
I will, for the clarity of the exposition, treat the two talks as a continuum
• Much effort has been expended to search for a particle physics connection to dark matter

• The cosmic microwave background establishes a matter-density target for dark matter

• If dark matter is produced thermally, the observed abundance sets a requirement for the coupling and particle mass
Search range for thermal dark matter

The thermal relic hypothesis restricts the allowed range of DM masses

Non-thermal: $\sim 10^{-20} \text{ eV}$

Thermal: m_{DM}

Non-thermal: $\sim 100 \text{ M}_\odot$

BBN, CMB

$\sim 10 \text{ keV}$

MeV

GeV

100 TeV

Light DM

WIMPS

Thermal contact implies new mediator

Hidden sector light DM well-motivated model

Thermal freeze-out for weak scale masses has driven DM searches for last ~ 30 years

perturbativity overclosure
Light thermal dark matter

A freeze-out scenario with light dark matter (χ) requires new light mediator to explain the relic density in order to avoid overproduction of the dark matter

$$<\sigma v>_{\text{relic}} \sim \frac{g_D^2 g_{SM}^2 m_x^2}{m_{\phi}^4} \quad (m_{\phi} \gg m_x)$$

$$m_{\phi}^4 \sim \frac{g_D^2 g_{SM}^2 m_x^2}{<\sigma v>} \leq \frac{m_x^2}{<\sigma v>} \quad \text{since } g \leq O(1)$$

The mediator must be neutral under the SM and renormalizable. Simplest choices:

- New scalar (ϕ) with Higgs coupling
- New vector (A') with photon coupling

These are naturally realized in the context of hidden sectors
WIMPs, Hidden Sectors, …

- **WIMPs** provides an attractive realization of the thermal relic scenario
 - Tightly tied to EWSB
 - Identification with the LSP
 - large viable mass range
- However, direct dark matter and LHC searches now highly constrain this scenario
 - The lighter mass range is harder to access
 - Motivation for pushing direct searches to lower masses
 - Many new ideas in play
 - One of these approaches – **hidden sectors** - naturally accommodates lower masses
 - Hidden sectors are best studied in accelerator experiments
 - A combination of collider and fixed target accelerator experiments can fully probe directly annihilating thermal dark matter in the MeV to GeV range

J. Liu, X. Chen and X. Ji, DOI: 10.1038/NPHYS4039
The lighter mass range is harder to access
- Motivation for pushing direct searches to lower masses
- Many new ideas in play
- One of these approaches – hidden sectors - naturally accommodates lower masses
- Hidden sectors are best studied in accelerator experiments
- A combination of collider and fixed target accelerator experiments can fully probe directly annihilating thermal dark matter in the MeV to GeV range

WIMPs provides an attractive realization of the thermal relic scenario
- Tightly tied to EWSB
- Identification with the LSP
- Large viable mass range
- However, direct dark matter and LHC searches now highly constrain this scenario

The lighter mass range is harder to access
- Motivation for pushing direct searches to lower masses
- Many new ideas in play
- One of these approaches – hidden sectors - naturally accommodates lower masses
- Hidden sectors are best studied in accelerator experiments
- A combination of collider and fixed target accelerator experiments can fully probe directly annihilating thermal dark matter in the MeV to GeV range
Hidden sectors

- There are several viable new interactions involving a “hidden sector” that respect Standard Model symmetries and have dimensionless couplings, i.e. they are sizeable irrespective of their source
- Hidden sectors are generic in many BSM theories
 - Dark matter could be part of a dark sector
 - Let’s consider the so-called vector portal: a “Dark Sector” coupled to the SM via a low-mass spin 1 “dark photon” mediator, the gauge boson of a new U(1) symmetry
 - These dark photons A' could be in the MeV to GeV mass range and mix with the SM photon with mixing strength ϵ
 - The dark photon could decay to
 - SM fermions if other DM states are inaccessible, producing visible decays
 - a lighter dark matter state χ
 - If $m_\chi < m_{A'}/2$, then the dominant decay mode of the A' would then be invisible: $A' \rightarrow \chi \overline{\chi}$
 - A dark sector could potentially explain
 - the proton charge radius puzzle and the muon $g-2$ anomaly
 - A dark sector is more general than light dark matter, but

\[\text{GUT (2 loops)} \]

\[\gamma \rightarrow A' \]

$\epsilon \sim 10^{-4} - 10^{-2}$

$\rightarrow 10^{-7}$ if both U(1)’s are in unified groups

e.g. Arkani-Hamed & Weiner; Cheung, Ruderman, Wang, Yavin; Morrissey, Poland, Zurek; Essig, Schuster, Toro;
Dark sector searches

- Dark photons can be produced in accelerator experiments
 - Photons in any process can be replaced by dark photons (with an extra factor of ε^2)

Annihilation

\[
\begin{align*}
\text{e}^- & \quad \text{A}' \\
\text{e}^+ & \quad \text{colliders}
\end{align*}
\]

Meson decay

\[
\begin{align*}
M & \quad \text{A}' \\
\gamma & \quad \text{p beam dump, hadron-rich environment}
\end{align*}
\]

Radiation

\[
\begin{align*}
\text{e}^- & \quad \text{A}'
\end{align*}
\]

- LHC can explore the high mass regime
 - Limits are not very constraining below the GeV regime

ATLAS Exotics Searches* - 95% CL Upper Exclusion I

<table>
<thead>
<tr>
<th>Model</th>
<th>ℓ, γ</th>
<th>Jets \pm</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>0 e, μ</td>
<td>1 - 4 j</td>
<td>Yes</td>
<td>36.1</td>
</tr>
<tr>
<td>DM</td>
<td>0 e, μ</td>
<td>≤ 1 j</td>
<td>Yes</td>
<td>36.1</td>
</tr>
<tr>
<td>VV/EE</td>
<td>0 e, μ</td>
<td>1 J, ≤ 1</td>
<td>Yes</td>
<td>3.2</td>
</tr>
</tbody>
</table>

ATLAS limits at 95% CL, direct detection limits at 90% CL

$\sqrt{s} = 8$ TeV $\sqrt{s} = 13$ TeV

Particle Physics and Astrophysics Group

David Hitlin Brookhaven Forum Oct. 11, 2017 9
The light dark sector at colliders

- A (simplified) roadmap

Dark photon decay channels

- Visible decay lepton/quark pairs, search for a narrow resonance. Width is small ($\Gamma \sim m_\ell e^2$)

- Invisible decay to lighter dark sector state

- Invisible decay to lighter dark sector state

- Complicated: decay to two photons via off-shell electron loop, A'-photon mixing (LSW),...

The dark photon mass $m_{A'} > 2m_\ell$?

- Yes
 - Lighter dark sector states χ accessible?
 - Yes
 - Invisible decay to lighter dark sector state
 - No
 - Complicated: decay to two photons via off-shell electron loop, A'-photon mixing (LSW),...

- No
 - Lighter dark sector states χ accessible?
 - Yes
 - Invisible decay to lighter dark sector state
 - No
 - Complicated: decay to two photons via off-shell electron loop, A'-photon mixing (LSW),...
MeV – GeV dark sector

Lepton / quark decays

\[A' \]
\[e^- \]
\[e^+ \]

decay via kinetic mixing → small width \(\Gamma \sim \alpha m \varepsilon^2 \)

Prompt or displaced decays

Light dark sector states \(\chi \)

\[A' \]
\[\chi \]
\[\chi \]

Not \(\varepsilon \) suppressed
Dominates if \(m_\chi < 2m_{A'} \)

Two cases:
\(\chi \) is stable \(\Rightarrow \) invisible decays
\(\chi \) decays back to SM particles

Coupling is often characterized as

\[y = \varepsilon^2 \alpha_D \left(\frac{m_\chi}{m_{A'}} \right)^4 \]
The workshop considered WIMP, Hidden Sector and Ultralight Dark Matter and a suite of experiments to extend the sensitivity of direct detection and accelerator-based searches.

I will discuss the \textit{BABAR} contribution to current dark matter/dark photon search limits and, in the next talk, a potential future experiment to improve sensitivity, LDMX.
The workshop considered WIMP, Hidden Sector and Ultralight Dark Matter and a suite of experiments to extend the sensitivity of direct detection and accelerator-based searches.

I will discuss the BABAR contribution to current dark matter/dark photon search limits and, in the next talk, a potential future experiment to improve sensitivity, LDMX.
Dark sector studies at BABAR

BABAR has conducted an extensive Dark Sector search program

Search for dark photon
\[e^+e^- \to \gamma A', A' \to e^+e^-, \mu^+\mu^- \]
\[e^+e^- \to \gamma A', A' \to \text{invisible} \]
\[\pi^0 \to \gamma \ell^+\ell^-, \eta \to \gamma \ell^+\ell^-, \phi \to \eta \ell^+\ell^- \]

Search for dark Higgs boson
\[e^+e^- \to h' A', h' \to A' A' \]

Search for dark boson(s)
\[e^+e^- \to \gamma A' \to W' W'' \]

Search for dark hadrons
\[e^+e^- \to \pi_D + X, \quad \pi_D \to e^+e^-, \mu^+\mu^- \]

Search for dark scalar (s) and dark pseudoscalar (a)
\[B \to K(\ast)s \to K(\ast) \ell^+\ell^- / B \to K(\ast) a \to K(\ast) \ell^+\ell^- \]
\[B \to ss \to 2(\ell^+\ell^-) \]

Search for “muonic dark force”
\[e^+e^- \to \mu^+\mu^- Z', Z' \to \mu^+\mu^- \]

Search for leptophilic dark scalar
\[e^+e^- \to \tau^+\tau^- h', h' \to \mu^+\mu^- (4 \text{ leptons} + \text{MET}) \]

Search for self-interacting dark matter
\[e^+e^- \to \gamma A' A' A', A' \to \ell^+\ell^-, \pi^+\pi \]

Ongoing / published Preliminary studies
The **BABAR** experiment

BABAR at PEP-II collected ~ 500 fb\(^{-1}\) of data, mainly at and around the \(\Upsilon(4S), \Upsilon(3S)\) and \(\Upsilon(2S)\) resonances

The BABAR detector

\(\Upsilon(4S)\)

- **e\(^+\) (3.1 GeV)**
- **e\(^-\) (9 GeV)**
- **1.5 T superconducting solenoid**
- **DIRC(PID)**
 - 144 quartz bars
 - 11000 PMs
- **EMC**
 - 6500 CsI(Tl) crystals
- **Drift Chamber**
 - 40 layers
- **Instrumented Flux Return**
 - RPCs / LSTs (muon / neutral hadrons)
- **Silicon Vertex Tracker**
 - 5 layers, double sided strips

B factories offer an ideal environment to search for dark sector particles, provided there is an appropriate trigger, distinct from the usual multiparticle trigger
Some highlights of the **BABAR** program

Search for dark photons in $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow e^+e^-, \mu^+\mu^-$

Search for dark Higgs bosons in $e^+e^- \rightarrow h'A'$, $h' \rightarrow A'A'$

This talk will cover two recent measurements

Search for invisible dark photon decay

Search for muonic dark force
Search for invisible A' decay

- The dark photon will decay invisibly if there are lighter dark sector states.
- At e^+e^- colliders, we can search for

 $e^+e^- \rightarrow \gamma A', \ A' \rightarrow \text{invisible}$

 by tagging the recoil photon in “single photon” events.
- The signature of the invisible dark photon is a monochromatic photon and missing energy/mass

 $M_X^2 = s - 2E_{\gamma}\sqrt{s}$

- Hermeticity is key, but we need to allow some machine background.
- The search strategy:
 select a single-photon final state, then look for
 a bump in missing mass M_X (or E_γ).
- Main backgrounds: $e^+e^- \rightarrow \gamma\gamma$ and $e^+e^- \rightarrow \gamma e^+e^-$
 with particles outside detector acceptance.
- BABAR collected ~53 fb$^{-1}$ of data with dedicated single photon triggers during its last year of data taking, mostly collected at the $Y(3S)$ and $Y(2S)$ energies.
Single photon trigger

- Search requires a dedicated single-photon trigger
 - Level-1 Hardware trigger: 1 or more calorimeter clusters with $E_{\text{lab}} > 0.8$ GeV
 - Level-3 Software trigger: Two different software triggers were used

<table>
<thead>
<tr>
<th>M_X</th>
<th>Low Mass</th>
<th>High Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Upsilon(4S)$</td>
<td>5.9 fb$^{-1}$</td>
<td>-- -- --</td>
</tr>
<tr>
<td>$\Upsilon(3S)$</td>
<td>28 fb$^{-1}$</td>
<td>20 fb$^{-1}$</td>
</tr>
<tr>
<td>$\Upsilon(2S)$</td>
<td>14.4 fb$^{-1}$</td>
<td>14.4 fb$^{-1}$</td>
</tr>
<tr>
<td>off-peak</td>
<td>4.2 fb$^{-1}$</td>
<td>1.5 fb$^{-1}$</td>
</tr>
<tr>
<td>Total</td>
<td>53 fb$^{-1}$</td>
<td>35.9 fb$^{-1}$</td>
</tr>
</tbody>
</table>

$E^*_\gamma = \frac{s - M^2_X}{2\sqrt{s}}$
Event selection

Low M_X
$4 \text{ GeV}^2 < M_X^2 < 36 \text{ GeV}^2$

- Dominant background from $e^+e^- \rightarrow \gamma\gamma$ events where a photon escapes detection
- 1 Electromagnetic calorimeter (EMC) cluster
- Require $E^*_\gamma > 3 \text{ GeV}$
- No drift chamber tracks with momentum $p^* > 1 \text{ GeV}$
- Multivariate discriminator cut

Low M_X
$24 \text{ GeV}^2 < M_X^2 < 69 \text{ GeV}^2 \gamma(3S)$
$63.5 \text{ GeV}^2 \gamma(2S)$

- Dominant background from radiative Bhabha events $e^+e^- \rightarrow e^+e^-\gamma$ events where the electron and positron escape detection
- 1 EMC cluster with transverse profile consistent with an electromagnetic shower
- Require $E^*_\gamma > 1.5 \text{ GeV}$
- No drift chamber tracks with momentum $p^* > 0.1 \text{ GeV}$
- Multivariate discriminator cut
The BDT discriminator

- Apply additional selection criterion using Boosted Decision Tree (BDT) multivariate discriminator
- The BDT is trained separately for the Low Mass and High Mass samples
- There are 12 discriminating variables including:
 - Shape parameters for the most energetic EMC cluster
 - Total EMC energy without the most energetic cluster
 - $E^*, \theta^*, \Delta \phi^* (E_1)$ of the second most energetic EMC cluster
 - $E^*, \theta^*, \Delta \phi^* (E_1)$ of the Instrumented Flux Return (IFR) cluster closest to the missing momentum direction
- BDT is trained using:
 - 25K simulated signal events with uniformly distributed \mathcal{A}' masses
 - 25K background events from $\Upsilon(3S)$ data sample
Search for invisible A' decay

To further reduce the residual peaking contribution from $e^+e^-\rightarrow\gamma\gamma$ events near $M_X \sim 0$, instead of simply relying on the BDT output, we define several signal regions in the bi-dimensional space of BDT output vs photon angle to optimize the analysis.

Split data into four non-overlapping regions for each dataset taken at different energies:
- Low-mass + tight,
- low-mass + loose,
- Not-tight, high-mass + loose,
- background.

There are a total of 9 low-mass datasets and 4 high-mass datasets.

- **Tight region**: further remove the residual peaking background from $e^+e^-\rightarrow\gamma\gamma$ near $M_X \sim 0$.
- **Loose region**: optimize for evidence of observation (smooth background).
- **Background**: pure background sample.
Search for invisible A' decay

Low-mass region: data distributions at $\Upsilon(3S)$

Peaking background $e^+e^-\rightarrow \gamma\gamma$ (irreducible)

Loose – Not tight $\Upsilon(3S)$

Tight selection $\Upsilon(3S)$

High-mass region: data distributions at $\Upsilon(2S)$

In blue: bkg-only fit

Loose selection $\Upsilon(2S)$

Loose selection $\Upsilon(2S)$
Search for invisible A' decay

We extract the signal by a simultaneous fit to these independent regions for each beam energy, for a total of 166 mass hypotheses. For each fit, we fix the background shape using the background region, and float the signal yield, peaking and continuum background contributions.

Most significant fit $m_{A'} = 6.22$ GeV

Local (global) significance: 3.1σ (2.6σ)

Global p-value $\sim 1\%$

We find no significant signal
Search for invisible A' decay

This represents a significant improvement over previous measurements.

Rules out the entire region preferred by $(g-2)_\mu$ anomaly.
Muonic dark force

Consider a new dark force that couples only to the second and third generation of leptons with a corresponding gauge boson Z' (arXiv:1401.2459)

Such a force could explain various anomalies observed in the muon sector ("$g-2$" discrepancy, proton radius puzzle, ...), and account for dark matter as sterile neutrinos by increasing their cosmological abundance via new interactions with SM neutrinos.

Some constraints from neutrino physics have already been derived, but they only indirectly probe the existence of Z' (with large systematic uncertainties).

We can search for direct Z' production at colliders via Z' bremsstrahlung:

\[e^+e^- \rightarrow \mu^+\mu^- Z', \quad Z' \rightarrow \mu^+\mu^- \]
Muonic dark force

Search for Z' in $e^+e^- \rightarrow \mu^+\mu' Z', Z' \rightarrow \mu^+\mu'$ events

Analysis overview

• Analysis based on 514 fb$^{-1}$ of data collected at $\Upsilon(4S)$, $\Upsilon(3S)$ and $\Upsilon(2S)$

• Requirements

 • Four tracks and no extra neutral energy ($E_{\text{extra}} < 200$ MeV)
 • Particle identification: at least 2 same-sign tracks identified as muon
 • Invariant mass of the four μs within 500 MeV of the nominal CM-energy
 • Events having a dimuon candidate within 10 MeV of the $\Upsilon(1S)$ mass for the $\Upsilon(2S)$ and $\Upsilon(3S)$ dataset are vetoed to reject $\Upsilon(2S,3S) \rightarrow \pi\pi \Upsilon(1S), \Upsilon(1S) \rightarrow \mu\mu$

 • A kinematic fit imposing the beam-energy constraint is performed, but no constraints on the χ^2 are applied.

This is a blind analysis, with the selections criteria optimized on a small subset (5%) of the data, which is subsequently discarded.
Muonic dark force

- The signal region is dominated by $e^+e^- \rightarrow 4\mu$ background
- Discrepancies arise primarily from ISR, which is not in the Monte Carlo, as well as from differences in particle identification efficiencies, track reconstruction,...
- The ratio data/MC is used to correct the signal efficiency
- The low 4μ mass region is well-reproduced by the Monte Carlo
- Factoring in the ISR contribution, the correction factors derived from this region agree with those determined at high masses
Muonic dark force

We extract the signal separately for the data at the $\Upsilon(4S)$, $\Upsilon(3S)$ and $\Upsilon(2S)$ by performing a series of fits to the reduced dimuon mass for each sample.

For each mass hypothesis, we fit over a fixed range of 0-0.3 GeV ($m_R < 0.2$ GeV) or a window corresponding to 5σ signal resolution ($m_R > 0.2$ GeV). A region of ±30 MeV around the J/ψ is excluded.

Fit $m_R = 0.05$ GeV

Most significant fit $m_R = 0.79$ GeV

Local /global significance: 4.3σ /1.6σ
Muonic dark force

We extract the signal separately for the data at the \(\Upsilon(4S) \), \(\Upsilon(3S) \) and \(\Upsilon(2S) \) by performing a series of fits to the reduced dimuon mass for each sample.

For each mass hypothesis, we fit over a fixed range of 0-0.3 GeV \((m_R < 0.2 \text{ GeV})\) or a window corresponding to 5\(\sigma\) signal resolution \((m_R > 0.2 \text{ GeV})\). A region of \(\pm 30 \text{ MeV}\) around the \(J/\psi\) is excluded.

We extract the cross-section separately for the data at the \(\Upsilon(4S) \), \(\Upsilon(3S) \) and \(\Upsilon(2S) \) and combine the results together.

Combined cross-section and significance

Significance distribution

Compatible with null hypothesis.
Muonic dark force

These results improve previous constraints from the neutrino experiments and exclude all but a sliver of the region favored by the \textquoteleft\textquoteleft g-2\textquoteright\textquoteright anomaly.
More to come...

On-going searches for dark sector at BABAR

Search for dark scalar (ϕ): A light dark scalar could couple to SM fermions via its mixing with the Higgs. Since the coupling are proportional to the mass, the search strategy is to look for a dimuon resonance in $e^+e^- \rightarrow \tau^+\tau^- \phi$, $\phi \rightarrow \mu^+\mu^-$, e^+e^- events. In this manner $BABAR$ should be able to probe the remaining “$g-2$” preferred region at low masses.

Self-interacting dark matter: if the dark-sector coupling is strong, dark sector bound states (darkonium) could be formed. These states have a striking multi-muon final state signature at $BABAR$.

And hopefully more...

Limits on dark scalar (ϕ) coupling

Projected sensitivity

B. Batell, N. Lange, D. McKeen, M. Pospelov, A. Ritz
Summary

Light dark sectors having a rich phenomenology have emerged as a fertile new regime for dark matter searches, as the WIMP paradigm is now highly constrained.

Low-energy, high-intensity colliders provide a sensitive probe for dark sectors.

BABAR has an extensive program to search for dark sector signatures, and set stringent limits on their existence.

Belle II will over the next decade improve these collider limits.

Extending the search region to the thermal relic limit at low masses requires fixed target accelerator experiments