g-2 on the lattice

Christoph Lehner (BNL)

October 12, 2017 - Brookhaven Forum

Collaborators in the RBC/UKQCD $g-2$ effort

Tom Blum (Connecticut)
Peter Boyle (Edinburgh)
Norman Christ (Columbia)
Vera Guelpers (Southampton) Masashi Hayakawa (Nagoya) James Harrison (Southampton)
Taku Izubuchi (BNL/RBRC)

Christoph Lehner (BNL)
Kim Maltman (York)
Chulwoo Jung (BNL)
Andreas Jüttner (Southampton)
Luchang Jin (Connecticut)
Antonin Portelli (Edinburgh)

Theory status for a_{μ} - summary

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	$\mathbf{2 . 6}$
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal		$\approx \mathbf{1 . 6}$

Reduce uncertainties on hadronic contributions!

The Hadronic Light-by-Light contribution

Quark-connected piece (charge factor of up/down quark contribution: $\frac{17}{81}$)

Dominant quark-disconnected piece (charge factor of up/down quark contribution: $\frac{25}{81}$)

Sub-dominant quark-disconnected pieces (charge factors of up/down quark contribution: $\frac{5}{81}$ and $\frac{1}{81}$)
T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., Phys. Rev. D 93, 014503 (2016)

Compute quark-connected contribution with new computational strategy

yields more than an order-of-magnitude improvement (red symbols) over previous method (black symbols) for a factor of ≈ 4 smaller cost.

New stochastic sampling method

Stochastically evaluate the sum over vertices x and y :

- Pick random point x on lattice
- Sample all points y up to a specific distance $r=|x-y|$, see vertical red line
- Pick y following a distribution $P(|x-y|)$ that is peaked at short distances

Cross-check against analytic result where quark loop is replaced by muon loop

In Figure: $m_{\text {loop }}=m_{\text {line }}$
T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., PRL118(2017)022005

$$
\begin{align*}
a_{\mu}^{\mathrm{cHLbL}}=\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{cHLbL}} & =(0.0926 \pm 0.0077)\left(\frac{\alpha}{\pi}\right)^{3} \\
& =(11.60 \pm 0.96) \times 10^{-10}(11) \tag{11}\\
a_{\mu}^{\mathrm{dHLbL}}=\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{dHLbL}} & =(-0.0498 \pm 0.0064)\left(\frac{\alpha}{\pi}\right)^{3} \\
& =(-6.25 \pm 0.80) \times 10^{-10}(12) \\
a_{\mu}^{\mathrm{HLbL}}=\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{HLbL}} & =(0.0427 \pm 0.0108)\left(\frac{\alpha}{\pi}\right)^{3} \\
& =(5.35 \pm 1.35) \times 10^{-10} \tag{13}
\end{align*}
$$

Makes HLbL an unlikely candidate to explain the discrepancy!
Next need to address finite-volume and lattice-spacing systematics and sub-leading diagrams

Finite-volume errors of the HLbL

Remove power-law like finite-volume errors by computing the muonphoton part of the diagram in infinite volume (c.L. talk at lattice 2015 and Green et al. 2015, PRL115(2015)222003; Asmussen et al. 2016, PoS,LATTICE2016 164)

Now completed PRD96(2017)034515 with improved weighting function.

Hadronic light-by-light contribution Summary and outlook

New methods allow for a complete first-principles calculation of the hadronic light-by-light contribution to the $(g-2)_{\mu}$.

Control of all uncertainties on the 10% level over the next 1-2 years seems possible.

Even with current large systematic uncertainty, no new physics scenario (HLbL) unlikely!

Theory status for $a_{\mu}-$ HVP LO

First-principles approach to HVP LO

Quark-connected piece with by far dominant part from up and down quark loops, $\mathcal{O}\left(700 \times 10^{-10}\right)$

Quark-disconnected piece, $-9.6(4.0) \times 10^{-10}$
Phys.Rev.Lett. 116 (2016) 232002

QED corrections, $\mathcal{O}\left(10 \times 10^{-10}\right)$

All results below are obtained using domain-wall fermions at physical pion mass with lattice cutoffs $a^{-1}=1.73 \mathrm{GeV}$ and $a^{-1}=2.36 \mathrm{GeV}$.

HVP quark-connected contribution

Starting from the vector current

$$
J_{\mu}(x)=i \sum_{f} Q_{f} \bar{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)
$$

we may write

$$
a_{\mu}^{\mathrm{HVP}}=\sum_{t=0}^{\infty} w_{t} C(t)
$$

with

$$
C(t)=\frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2}\left\langle J_{j}(\vec{x}, t) J_{j}(0)\right\rangle
$$

and w_{t} capturing the photon and muon part of the diagram (Bernecker-Meyer 2011).

A connection to the R-ratio data

We now have all ingredients to compare to the R-ratio data

We can connect $C(t)$ to the R-ratio data (Bernecker, Meyer 2011) as

$$
\Pi\left(-Q^{2}\right)=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{s}{s+Q^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right)
$$

with

$$
R(s)=\frac{\sigma\left(s, e^{+} e^{-} \rightarrow \text { had }\right)}{\sigma\left(s, e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, \text {tree }\right)}=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \text { had }\right) .
$$

A Fourier transform then gives

$$
C(t) \propto \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s} t} \equiv \int_{0}^{\infty} d(\sqrt{s}) \rho(\sqrt{s}) e^{-\sqrt{s} t}
$$

with spectral density $\rho(\sqrt{s})$.

Below the $R(s)$ is taken from Jegerlehner 2016:

Lattice data agrees quite well with the R-ratio data

Lattice data is precise at shorter distances, R-ratio data is precise at longer distances

Lattice data agrees quite well with the R-ratio data

Lattice data is precise at shorter distances, R-ratio data is precise at longer distances

This allows us to devise a "Window method":

$$
a_{\mu}=\sum_{t} w_{t} C(t) \equiv a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

with

$$
\begin{aligned}
a_{\mu}^{\mathrm{SD}} & =\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right] \\
a_{\mu}^{\mathrm{W}} & =\sum_{t} C(t) w_{t}\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right] \\
a_{\mu}^{\mathrm{LD}} & =\sum_{t} C(t) w_{t} \Theta\left(t, t_{1}, \Delta\right)
\end{aligned}
$$

and each contribution accessible from both lattice and R -ratio data.

Re-combine a_{μ}^{W} from lattice with a_{μ}^{LD} from R-ratio:

Lattice:

Lattice:

sQED FV correction

Lattice:

sQED FV correction

Lattice:

sQED FV correction

Lattice:

Lattice:

Lattice:

Note: combined lattice and R-ratio is more precise than R-ratio alone! Error minimal for $t_{1}=1.2 \mathrm{fm}$.

HVP - Summary and outlook

- QED corrections included
- Combine and cross-check lattice and R-ratio data: This method allows for further reduction in uncertainty over the already very precise R -ratio results.
- Here we used the results of Jegerlehner 2016 for a combined analysis and obtained a result with $\delta a_{\mu}^{\mathrm{HVP}} \mathrm{LO}=2.7 \times 10^{-10}$ (most precise HVP determination currently available!)
- No new physics scenario (HVP) unlikely, however, low-energy $\pi \pi$ states and $\pi \gamma$ states in R-ratio effectively not yet checked \Rightarrow future work

Thank you

Addressing the finite-volume problem

From Aubin et al. 2015 (arXiv:1512.07555v2)

MILC lattice data with $m_{\pi} L=4.2, m_{\pi} \approx 220 \mathrm{MeV}$; Plot difference of $\Pi\left(q^{2}\right)$ from different irreps of 90 -degree rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a_{μ} is poorly described by the two-pion contribution, the volume dependence may be described sufficiently well to use ChPT to control FV errors at the 1% level; this needs further scrutiny Aubin et al. find an $O(10 \%)$ finite-volume error for $m_{\pi} L=4.2$ based on the $A_{1}-A_{1}^{44}$ difference (right-hand plot)

Compare difference of integrand of $48 \times 48 \times 96 \times 48$ (spatial) and $48 \times 48 \times 48 \times 96$ (temporal) geometries with NLO FV ChPT $\left(A_{1}-A_{1}^{44}\right):$

$$
m_{\pi}=140 \mathrm{MeV}, p^{2}=m_{\pi}^{2} /\left(4 \pi f_{\pi}\right)^{2} \approx 0.7 \%
$$

Our efforts to control the finite-volume error:

- We have generated three additional lattices with physical pion mass and $L=4.8 \mathrm{fm}, 6.4 \mathrm{fm}$, and 9.6 fm ; we have started first measurements on these lattices.
- We are currently tuning our new Multi-Grid Lanczos method on the largest volumes to continue to use our noise-reduction techniques for these studies. For these ensembles the improved Multi-Grid Lanczos is critical.

Addressing the long-distance noise problem

There are two general classes of solutions to the long-distance noise problem

- Statistics \rightarrow Systematics: One can reduce statistical uncertainty at the cost of introducing an additional systematic uncertainty that then needs to be controlled; This requires additional care in estimating a potential systematic bias but may be overall beneficial.
- Statistics \uparrow : One can devise improved statistical estimators without additional systematic uncertainties

Concrete recent proposals:

- Replace $C(t)$ for large t with model, say multi-exponentials for $t \geq t^{*}$ HPQCD arXiv:1601.03071 (Statistics \rightarrow Systematics)
- Define stochastic estimator for strict upper and lower bounds of a_{μ} which have reduced statistical fluctuations RBC/UKQCD 2015, BMWc arXiv:1612.02364 (Statistics \uparrow)

Bound $C_{l}(t) \leq C(t) \leq C_{u}(t)$ with
$C_{1 / u}(t)= \begin{cases}C(t) & t<T, \\ C(T) e^{-(t-T) \bar{E}_{1 / u}} & t \geq T\end{cases}$
with \bar{E}_{u} being the ground state of the $V V$ correlator and

$$
\bar{E}_{I}=\log (C(T) / C(T+1)) .
$$

Concrete recent proposals (continued):

- RBC/UKQCD 2015 Improved stochastic estimator; hierarchical approximations including exact treatment of low-mode space DeGrand \& Schäfer 2004: (Statistics \uparrow):

Concrete recent proposals (continued):

- Phase reweighting (Savage et al.) (Statistics \rightarrow Systematics)

$$
C(t) \rightarrow C(t) \operatorname{Sign}[C(t-\Delta)]
$$

extrapolate to $\Delta \rightarrow \infty$

- Multi-level gauge field generation (Ce/Giusti/Schafer) (Statistics \uparrow)
- Action is local \Rightarrow independent evolution of gauge fields in sub-domains possible
- Recombination of independent samples over all subdomains may lead to exponential reduction of noise
- We are currently investigating this method for the HVP (M. Bruno for RBC/UKQCD)

The setup:

$$
\begin{equation*}
C(t)=\frac{1}{3 V} \sum_{j=0,1,2} \sum_{t^{\prime}}\left\langle\mathcal{V}_{j}\left(t+t^{\prime}\right) \mathcal{V}_{j}\left(t^{\prime}\right)\right\rangle_{\mathrm{SU}(3)} \tag{1}
\end{equation*}
$$

where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1 / 3)\left(\mathcal{V}_{\mu}^{u / d}-\mathcal{V}_{\mu}^{s}\right)$, and

$$
\begin{equation*}
\mathcal{V}_{\mu}^{f}(t)=\sum_{\vec{x}} \operatorname{Im} \operatorname{Tr}\left[D_{\vec{x}, t ; \vec{x}, t}^{-1}\left(m_{f}\right) \gamma_{\mu}\right] . \tag{2}
\end{equation*}
$$

We separate 2000 low modes (up to around m_{s}) from light quark propagator as $D^{-1}=\sum_{n} v^{n}\left(w^{n}\right)^{\dagger}+D_{\text {high }}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $\left(x_{\mu}-x_{\mu}^{(0)}\right) \bmod N=0$; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

Combination of both ideas is crucial for noise reduction at physical pion mass!

Fluctuation of $\mathcal{V}_{\mu}(\sigma)$:

Since $C(t)$ is the autocorrelator of \mathcal{V}_{μ}, we can create a stochastic estimator whose noise is potentially reduced linearly in the number of random samples, hence the normalization in the lower panel

Low-mode saturation for physical pion mass (here 2000 modes):

Result for partial sum $L_{T}=\sum_{t=0}^{T} w_{t} C(t)$:

For $t \geq 15 C(t)$ is consistent with zero but the stochastic noise is t-independent and $w_{t} \propto t^{4}$ such that it is difficult to identify a plateau region based only on this plot

Resulting correlators and fit of $C(t)+C_{s}(t)$ to $c_{\rho} e^{-E_{\rho} t}+c_{\phi} e^{-E_{\phi} t}$ in the region $t \in\left[t_{\text {min }}, \ldots, 17\right]$ with fixed energies $E_{\rho}=770 \mathrm{MeV}$ and $E_{\phi}=1020 . C_{s}(t)$ is the strange connected correlator.

We fit to $C(t)+C_{s}(t)$ instead of $C(t)$ since the former has a spectral representation.
We could use this model alone for the long-distance tail to help identify a plateau but it would miss the two-pion tail

We therefore additionally calculate the two-pion tail for the disconnected diagram in ChPT:

A closer look at the NLO FV ChPT prediction (1-loop sQED):
We show the partial sum $\sum_{t=0}^{T} w_{t} C(t)$ for different geometries and volumes:

The dispersive approach to HVP LO

The dispersion relation

$$
\begin{aligned}
\Pi_{\mu \nu}(q) & =i\left(q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right) \Pi\left(q^{2}\right) \\
\Pi\left(q^{2}\right) & =-\frac{q^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s}{s} \frac{\operatorname{Im} \Pi(s)}{q^{2}-s}
\end{aligned}
$$

allows for the determination of a_{μ}^{HVP} from experimental data via

$$
\begin{aligned}
a_{\mu}^{\mathrm{HVP} \mathrm{LO}} & =\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2}\left[\int_{4 m_{\pi}^{2}}^{E_{0}^{2}} d s \frac{R_{\gamma}^{\exp }(s) \hat{K}(s)}{s^{2}}+\int_{E_{0}^{2}}^{\infty} d s \frac{R_{\gamma}^{\mathrm{pQCD}}(s) \hat{K}(s)}{s^{2}}\right], \\
R_{\gamma}(s) & =\sigma^{(0)}\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \text { hadrons }\right) / \frac{4 \pi \alpha^{2}}{3 s}
\end{aligned}
$$

Experimentally with or without additional hard photon (ISR: $e^{+} e^{-} \rightarrow \gamma^{*}(\rightarrow$ hadrons $\left.) \gamma\right)$

Experimental setup: muon storage ring with tuned momentum of muons to cancel leading coupling to electric field

$$
\vec{\omega}_{a}=-\frac{q}{m}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{\beta} \times \vec{E}}{c}\right]
$$

Because of parity violation in weak decay of muon, a correlation between muon spin and decay electron direction exists, which can be used to measure the anomalous precession frequency ω_{a} :

BESIII 2015 update:

BESIII 2015 update:

Hagiwara et al. 2011:

Jegerlehner FCCP2015 summary:

final state	range (GeV)	$a_{\mu}^{\text {had(1) }} \times 10^{10}$ (stat) (syst) [tot]	rel	abs
ρ	(0.28, 1.05)	507.55 (0.39) (2.68)[2.71]	0.5\%	39.9\%
ω	(0.42, 0.81)	35.23 (0.42) (0.95)[1.04]	3.0\%	5.9\%
ϕ	($1.00,1.04$)	34.31 (0.48) (0.79)[0.92]	2.7\%	4.7\%
J / ψ		8.94 (0.42) (0.41)[0.59]	6.6\%	1.9\%
Υ		0.11 (0.00) (0.01)[0.01]	6.8\%	0.0\%
had	(1.05, 2.00)	60.45 (0.21) (2.80)[2.80]	4.6\%	42.9\%
had	(2.00, 3.10)	21.63 (0.12) (0.92)[0.93]	4.3\%	4.7\%
had	(3.10, 3.60)	3.77 (0.03) (0.10)[0.10]	2.8\%	0.1\%
had	(3.60, 9.46)	13.77 (0.04) (0.01)[0.04]	0.3\%	0.0\%
had	(9.46,13.00)	1.28 (0.01) (0.07)[0.07]	5.4\%	0.0\%
pQCD	$(13.0, \infty)$	1.53 (0.00) (0.00)[0.00]	0.0\%	0.0\%
data	$(0.28,13.00)$	687.06 (0.89) (4.19)[4.28]	0.6\%	0.0\%
total		688.59 (0.89) (4.19)[4.28]	0.6\%	100.0\%
Results for $a_{\mu}^{\text {had(1) }} \times 10^{10}$. Update August 2015, incl SCAN[NSK]+ISR[KLOE10,KLOE12,BaBar,[BESIII]				

Jegerlehner FCCP2015 summary $\left(\tau \leftrightarrow e^{+} e^{-}\right)$:

Our setup:

$$
\begin{equation*}
C(t)=\frac{1}{3 V} \sum_{j=0,1,2} \sum_{t^{\prime}}\left\langle\mathcal{V}_{j}\left(t+t^{\prime}\right) \mathcal{V}_{j}\left(t^{\prime}\right)\right\rangle_{\mathrm{SU}(3)} \tag{3}
\end{equation*}
$$

where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1 / 3)\left(\mathcal{V}_{\mu}^{\mu / d}-\mathcal{V}_{\mu}^{s}\right)$, and

$$
\begin{equation*}
\mathcal{V}_{\mu}^{f}(t)=\sum_{\vec{x}} \operatorname{Im} \operatorname{Tr}\left[D_{\vec{x}, t ; \vec{x}, t}^{-1}\left(m_{f}\right) \gamma_{\mu}\right] . \tag{4}
\end{equation*}
$$

We separate 2000 low modes (up to around m_{s}) from light quark propagator as $D^{-1}=\sum_{n} v^{n}\left(w^{n}\right)^{\dagger}+D_{\text {high }}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $\left(x_{\mu}-x_{\mu}^{(0)}\right) \bmod N=0$; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

Study $L_{T}=\sum_{t=T+1}^{\infty} w_{t} C(t)$ and use value of T in plateau region (here $T=20$) as central value. Use a combined estimate of a resonance model and the two-pion tail to estimate systematic uncertainty.

Combined with an estimate of discretization errors, we find

$$
\begin{equation*}
a_{\mu}^{\mathrm{HVP}}(\mathrm{LO}) \mathrm{DISC}=-9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10} \tag{5}
\end{equation*}
$$

From Aubin et al. 2015 (arXiv:1512.07555v2)

MILC lattice data with $m_{\pi} L=4.2, m_{\pi} \approx 220 \mathrm{MeV}$; Plot difference of $\Pi\left(q^{2}\right)$ from different irreps of 90 -degree rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a_{μ} is poorly described by the two-pion contribution, the volume dependence may be described sufficiently well to use ChPT to control FV errors at the 1% level; this needs further scrutiny

Aubin et al. find an $O(10 \%)$ finite-volume error for $m_{\pi} L=4.2$ based on the $A_{1}-A_{1}^{44}$ difference (right-hand plot)

Compare difference of integrand of $48 \times 48 \times 96 \times 48$ (spatial) and $48 \times 48 \times 48 \times 96$ (temporal) geometries with NLO FV ChPT $\left(A_{1}-A_{1}^{44}\right):$

$$
m_{\pi}=140 \mathrm{MeV}, p^{2}=m_{\pi}^{2} /\left(4 \pi f_{\pi}\right)^{2} \approx 0.7 \%
$$

HVP QED+strong IB contributions

 HVP QED diagram F

