Resonant Double Higgs Production in the Singlet Extended Standard Model at the LHC (arXiv:1701.08774, Ian M. Lewis, Matthew Sullivan; ongoing work with Sally Dawson)

Matthew Sullivan

University of Kansas, Brookhaven National Laboratory

Brookhaven Forum, October 12, 2017

Outline

- 1 Real Singlet Extended Standard Model
- 2 The Model's Parameters
- 3 Theoretical and Experimental Constraints
- 4 Resonant Double Higgs Production
- 5 Maximization of Double Higgs Production
- 6 Preview of Complex Singlet Model

Real Singlet Extended Standard Model

- Add a real scalar gauge singlet S to the Standard Model
- Allow for all renormalizable terms with no additional symmetry

$$/(H,S) = -\mu^{2}H^{\dagger}H + \lambda(H^{\dagger}H)^{2}$$

$$+ \frac{a_{1}}{2}H^{\dagger}HS + \frac{a_{2}}{2}H^{\dagger}HS^{2}$$

$$+ b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

Masses, vevs, and Mixing

vevs are given by minima of the potential

- Expand *H* as $H = \begin{pmatrix} 0 \\ (h+v)/\sqrt{2} \end{pmatrix}$ with *v* being the vev of *H*
- Expand S as S = s + x with x being the vev of S
- Diagonalize quadratic terms in potential to get masses
- Mass eigenstates h₁ and h₂ are related to gauge eigenstates h and s:

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

• h_1 has mass m_1 , h_2 has mass m_2

The Model's Parameters

- The eight original parameters can be written more usefully as m_1 , m_2 , θ , v, x, and three remaining independent parameters
- x, the vev of S is actually irrelevant
 - No new terms are introduced to the potential when S is shifted
 - What's important is what the parameters are in terms of the shifted s
 - We can fix a parameter such that S never gets a vev in the first place without any physical consequences
- So seven physical parameters can be m_1 , m_2 , θ , v, a_2 , b_3 , b_4

Parameter Relationships

- We want relationships between our seven physical parameters and the terms in our potential
- To reproduce $(v, x) = (v_{EW}, 0)$ minima:

$$\mu^2 = \lambda v_{EW}^2$$

 $b_1 = -rac{v_{EW}^2}{4}a_1$

To reproduce the masses and mixing angle:

$$a_1 = \frac{m_1^2 - m_2^2}{v_{EW}} \sin 2\theta$$

$$b_2 + \frac{a_2}{2} v_{EW}^2 = m_1^2 \sin^2 \theta + m_2^2 \cos^2 \theta$$

$$\lambda = \frac{m_1^2 \cos^2 \theta + m_2^2 \sin^2 \theta}{2 v_{EW}^2}.$$

Important Feynman Rules

Theoretical Constraints

- Vacuum stability requires the potential to be bounded from below
 - $b_4 > 0$ is required
 - $\lambda > 0$ is required as well
 - Guaranteed as long as $m_2^2 > 0$ and $m_1^2 > 0$

• $-2\sqrt{\lambda b_4} < a_2$ is also required

- Electroweak minimum should be the global minimum of the potential, not just an extremum
 - Need to check other extrema
- Requiring perturbative unitarity for $h_2h_2 \rightarrow h_2h_2$ at high energy places an upper bound on b_4

Experimental Constraints

■ ATLAS Higgs signal strengths places a constraint of cos² θ ≥ 0.88 or sin² θ ≤ 0.12

 Each Standard Model coupling to the 125 GeV Higgs is suppressed by cos θ

 Constraints from direct searches for heavy resonance decays to ZZ and W⁺W⁻ also must be satisfied, but these are weaker than the ATLAS bound

Resonant Double Higgs Production

- All three diagrams contribute to double Higgs production via gluon fusion
- Choosing m₁ = 125 GeV and m₂ > 2m₁, the third diagram leads to a resonant contribution
- With the narrow width approximation, we maximize the resonant production rate for different values of m₂ over the remaining parameters

Maximization of Double Higgs Production

Approximate resonant double Higgs production cross section:

$$\sigma(pp \rightarrow h_2) \mathrm{BR}(h_2 \rightarrow h_1 h_1)$$

- All h₂ production cross sections and Standard Model-like decay widths are suppressed by sin² θ compared to a SM Higgs of the same mass
- Larger mixing angle increases production of h₂ but also increases width to SM particles
- Increased production wins out, and the largest resonant double higgs production occurs when $\sin^2 \theta = 0.12$ at the ATLAS limit
- Problem reduces to maximizing the double Higgs branching ratio at the largest mixing angle

The Important Trilinear Coupling

$$\lambda_{211} = 2s^2 c b_3 + \frac{a_1}{2}c(c^2 - 2s^2) + (2c^2 - s^2)sva_2 - 6\lambda sc^2 v$$

- A larger magnitude of λ₂₁₁ means a larger double Higgs partial width
- For fixed masses, vev, and mixing angle, the only free parameters are *a*₂, *b*₃, and *b*₄
- Only mass and mixing angle affect SM-like decay widths
- λ and a_1 don't depend on b_4
- The only free parameters that affect the trilinear coupling are b₃ and a₂
- Maximizing the partial width to double Higgs also maximized the branching ratio to double Higgs

Resonant Double Higgs Production for Different $\sin^2 \theta$

 $\sigma_{\it SM}=32.91^{+13.6\%}_{-12.6\%}~{\rm fb},~{\rm NLO}~{\rm in}~{\rm QCD}~{\rm w}/~{\rm full}$ top mass effects

Preview of Complex Singlet Extended Standard Model

$$\begin{split} \mathcal{V}(H,S) &= \frac{m^2}{2} H^{\dagger} H + \frac{\lambda}{4} (H^{\dagger} H)^2 \\ &+ \left(\frac{|\delta_1| e^{i\phi_{\delta_1}}}{4} H^{\dagger} HS + c.c. \right) + \frac{\delta_2}{2} H^{\dagger} H |S|^2 + \left(\frac{|\delta_3| e^{i\phi_{\delta_3}}}{4} H^{\dagger} HS^2 + h.c \right) \\ &+ \left(|a_1| e^{i\phi_{\delta_1}} S + c.c. \right) \\ &+ \left(\frac{|b_1| e^{i\phi_{\delta_1}}}{4} S^2 + c.c. \right) + \frac{b_2}{2} |S|^2 \\ &+ \left(\frac{|c_1| e^{i\phi_{c_1}}}{6} S^3 + c.c. \right) + \left(\frac{|c_2| e^{i\phi_{c_2}}}{6} S |S|^2 + c.c. \right) \\ &+ \left(\frac{|d_1| e^{i\phi_{d_1}}}{8} S^4 + c.c. \right) + \left(\frac{|d_3| e^{i\phi_{d_3}}}{8} S^2 |S|^2 + c.c. \right) + \frac{d_2}{4} |S|^4 \end{split}$$

Masses, vevs, and Mixing in the Complex Model

• Expand *H* as
$$H = \begin{pmatrix} 0 \\ (h+v)/\sqrt{2} \end{pmatrix}$$
 with *v* being the vev of *H*

- Expand S as S = (s + iA)/√2 + x with x being the (complex) vev of S
- Diagonalize quadratic terms in potential to get three masses
- Mass eigenstates *h*₁, *h*₂, and *h*₃ are related to gauge eigenstates *h*, *s*, and *A*:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos\theta_1 & -\cos\theta_3 \sin\theta_1 & -\sin\theta_1 \sin\theta_3 \\ \cos\theta_2 \sin\theta_1 & \cos\theta_1 \cos\theta_2 \cos\theta_3 - \sin\theta_2 \sin\theta_3 & \cos\theta_3 \sin\theta_2 + \cos\theta_1 \cos\theta_2 \sin\theta_3 \\ \sin\theta_1 \sin\theta_2 & \cos\theta_1 \cos\theta_3 \sin\theta_2 + \cos\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 \sin\theta_3 - \cos\theta_2 \cos\theta_3 \end{pmatrix} \begin{pmatrix} h \\ s \\ A \end{pmatrix}$$

The Complex Model's Many Parameters

- There are originally 21 real parameters that be rewritten in a similar way to the real singlet
- S can be shifted like in the real case, removing the complex vev x by fixing 2 real parameters
- Unlike the real case, S can also be rotated by a phase arbitrarily, which can be used to eliminate the mixing angle θ₃
- Final parameters are 3 masses and 2 mixing angles, the vev v, plus all the quartic couplings (δ₂, δ₃, and all d parameters) and the S cubic couplings (the c parameters) remain free, just like the real singlet.
- With masses, mixings, and vev fixed, there are still 12 real parameters remaining

Simplified Mixing Matrix

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 & 0 \\ \cos\theta_2\sin\theta_1 & \cos\theta_1\cos\theta_2 & \sin\theta_2 \\ \sin\theta_1\sin\theta_2 & \cos\theta_1\sin\theta_2 & -\cos\theta_2 \end{pmatrix} \begin{pmatrix} h \\ s \\ A \end{pmatrix}$$

- θ_1 parametrizes how much the SM-like Higgs couplings of h_1 are suppressed
- θ_2 parametrizes how much the remaining SM-like Higgs couplings are spread between h_2 and h_3

Constraints for the Complex Singlet

- Vacuum stability requires the potential to be bounded from below; closed form not known
- Electroweak minimum should be the global minimum of the potential, not just an extremum; closed form not nown
- Requiring perturbative unitarity for all 2 to 2 scattering processes involving scalars, including goldstones, at high energy places an upper bound on all quartics; closed form is in terms of roots of quartic equations
- ATLAS Higgs signal strengths lead to cos² θ₁ ≥ 0.88 or sin² θ₁ ≤ 0.12
- Constraints from direct searches for heavy resonance decays to ZZ and W⁺W⁻ also must be satisfied
- We also require consistency with the oblique parameters at the 95% confidence level, calculated at one loop order

Masses and Mixings Allowed by Oblique Parameters

 Only interested in masses at least as heavy as the 125 GeV Higgs right now

Resonant Production of Higgs and a New Scalar at 13 TeV

- SM double Higgs cross section reference is roughly 13 fb
- If m₂ > m₁ + m₃, then we can get resonant production of h₁ and h₃
- Maximize the relevant trilinear for $h_3h_2h_1$ coupling
 - Without further constraints, the widths here can be 40% to 80% of the mass, and the resonance can be extremely wide
- Calculated at leading order with all relevant diagrams
 - $\theta_2 = 0$ means no box diagram in this case, though

Summary

- Standard Model double Higgs production is small, but resonant double Higgs production is more viable for observation at the LHC
- Best case scenario, 13 TeV double Higgs production cross section can be improved by around a factor of 30 over the Standard Model
- The parameter space of the real model can be reasonably probed at the LHC via resonant double Higgs production
- The complex model can lead to large resonant production for Higgs and a new scalar