

Radiative Corrections and Universal Extra Dimensions

Daniel Wiegand University of Pittsburgh @Brookhaven Forum 2017

with Ayres Freitas and Kyoungchul Kong

<u>Fig.1</u> A multi-loop correction to a tree

The Why, the What and the How

\circ the Why

- Universal Extra Dimensions (UED) is an attractive new physics model
- KK-Parity leads to stable dark matter candidate

o the What

Radiative corrections: 1)

- Split the heavily degenerate **mass spectrum**/open up decay channels (leading Log not sufficient)
- Induce KK-Number violating couplings (old and new)

o the How

- Sum over the an **infinite tower** of states for mass corrections
- The induced couplings do not require resummation but a cutoff

H. Cheng, K. Matchev, M. Schmaltz hep-ph/1702.00401

Universal Extra Dimensions (UED)

Universal Extra Dimensions:

- Assume five-dimensional spacetime manifold
- To explain four-dimensional world impose boundary conditions (Kaluza Klein Compactification/**Orbifolding**)

 $\Psi(x^{\mu}, y) = \Psi(x^{\mu}, -y)$

 $\Psi(x^{\mu}, y) = \Psi(x^{\mu}, y + 2\pi R)$

- Fields $\Psi(x^{\mu}, y)$ propagating can be decomposed into Fourier modes
- ψ_0 are the standard model modes, ψ_n a tower of additional (heavy) excitations of mass $M = \frac{n}{R}$

(Current Limit: $M = \frac{1}{R} \ge 1400$ GeV with $\Lambda R \sim 10^{1,2,3}$ @LO)

$$\Psi(x^{\mu}, y) = \frac{1}{\sqrt{\pi R}}\psi_0(x) + \sqrt{\frac{2}{\pi R}}\sum_{n=1}^{\infty}\psi_n(x)\cos\frac{ny}{R}$$

- N. Deutschmann, T.Flacke, J. Kim hep-ph/1702.00401
 K. Matchev, A.Datta et al hep-ph/1702.00413
- ³⁾ ATLAS hep-ex/1501.03555

Mass Corrections (I)

 $-2\pi ikx$

 $dxf(x)e^{2}$

Sum over KK-modes

Sum over winding numbers (formaly infinite)

Mass Corrections (I)

Sum over KK-modes

Sum over winding numbers (formaly infinite)

Regularize by dropping the zero winding number, e.g.:

$$\sum_{n=0}^{\infty} A_o[n^2 M] = \frac{M^2}{2} \sum_{k=-\infty}^{\infty} \left[-\frac{\delta^2(k)}{4\pi^2} \left(\frac{1}{\varepsilon} + 1 - \log \frac{M^2}{\mu^2} \right) - \frac{1}{2\pi^2 |k|^3} \right]$$

Mass Corrections (I)

which is contributing to the Bulk corrections.

Mass Corrections (I)

Mass Corrections (II)

Mass Corrections (II)

<u>Fig.2</u> n=1 mass spectrum leading log (left) vs full one loop (right)

Vertex Corrections (I)

Old Couplings improved

Vertex Corrections (I)

Old Couplings improved

Vertex Corrections (I)

Old Couplings improved

Vertex Corrections (II)

New couplings induced

Vertex Corrections (II)

New couplings induced

Decay Widths and Branching Ratios

contain a selection of decay channels so far!)

...and now what?

What we have:

- A fully **one-loop corrected mass spectrum** telling us which decay channels are open!
- A comprehensive collection of n=2 KK-number violating Wilson coefficients implemented in CalcHep

...and now what?

What we have:

- A fully **one-loop corrected mass spectrum** telling us which decay channels are open!
- A comprehensive collection of n=2 KK-number violating Wilson coefficients implemented in CalcHep

Follow-up/Work in Progress:

- How about Collider signatures/limits?
- \circ Implications for/from relic abundance?

How are Λ and R going to turn out? Stay tuned!

