Radiative Corrections and Universal Extra Dimensions

Daniel Wiegand
University of Pittsburgh
@Brookhaven Forum 2017

issius

Fig. 1 A multi-loop correction to a tree
with Ayres Freitas and Kyoungchul Kong

The Why, the What and the How

- the Why

- Universal Extra Dimensions (UED) is an attractive new physics model
- KK-Parity leads to stable dark matter candidate
o the What
Radiative corrections: ${ }^{1)}$
- Split the heavily degenerate mass spectrum/open up decay channels (leading Log not sufficient)
- Induce KK-Number violating couplings (old and new)
- the How
- Sum over the an infinite tower of states for mass corrections
- The induced couplings do not require resummation but a cutoff

1) H. Cheng, K. Matchev, M. Schmaltz hep-ph/1702.00401

Universal Extra Dimensions (UED)

Universal Extra Dimensions:

- Assume five-dimensional spacetime manifold
- To explain four-dimensional world impose boundary conditions (Kaluza Klein Compactification/Orbifolding)

$$
\begin{aligned}
& \Psi\left(x^{\mu}, y\right)=\Psi\left(x^{\mu}, y+2 \pi R\right) \\
& \Psi\left(x^{\mu}, y\right)=\Psi\left(x^{\mu},-y\right)
\end{aligned}
$$

- Fields $\Psi\left(x^{\mu}, y\right)$ propagating can be decomposed into Fourier modes

$$
\Psi\left(x^{\mu}, y\right)=\frac{1}{\sqrt{\pi R}} \psi_{0}(x)+\sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \psi_{n}(x) \cos \frac{n y}{R}
$$

- ψ_{0} are the standard model modes, ψ_{n} a tower of additional (heavy) excitations of mass $M=\frac{n}{R}$

${ }^{1)}$ N. Deutschmann, T.Flacke, J. Kim hep-ph/1702.00401
${ }^{2)}$ K. Matchev, A.Datta et al hep-ph/1702.00413
${ }^{3)}$ ATLAS hep-ex/1501.03555

Mass Corrections (I)

...Using 4D EFT and Poisson summation identity:

Sum over KK-modes
Sum over winding numbers
(formaly infinite)

Mass Corrections (I)

...Using 4D EFT and Poisson summation identity:

Sum over KK-modes Sum over winding numbers
(formaly infinite)

Regularize by dropping the zero winding number, e.g.:

$$
\sum_{n=0}^{\infty} A_{o}\left[n^{2} M\right]=\frac{M^{2}}{2} \sum_{k=-\infty}^{\infty}\left[-\frac{\delta^{2}(k)}{4 \pi^{2}}\left(\frac{1}{\varepsilon}+1-\log \frac{M^{2}}{\mu^{2}}\right)-\frac{1}{2 \pi^{2}|k|^{3}}\right]
$$

Mass Corrections (I)

...Using 4D EFT and Poisson summation identity:

Sum over KK-modes Sum over winding numbers
(formaly infinite)

Regularize by dropping the zero winding number, e.g.:

$$
\sum_{n=0}^{\infty} A_{o}\left[n^{2} M\right]=\frac{M^{2}}{2} \sum_{k=-\infty}^{\infty}\left[-\frac{\delta^{2}(k)}{4 \pi^{2}}\left(\frac{1}{\varepsilon}+1-\log \frac{M^{2}}{\mu^{2}}\right)\left(\frac{1}{2 \pi^{2}|k|^{3}}\right) \Rightarrow-\frac{\zeta(3) M^{2}}{2 \pi^{2}}\right.
$$

which is contributing to the Bulk corrections.

Mass Corrections (I)

...Using 4D EFT and Poisson summation identity:

Sum over KK-modes Sum over winding numbers
(formaly infinite)

Regularize by dropping the zero winding number, e.g.:

$$
\sum_{n=0}^{\infty} A_{o}\left[n^{2} M\right]=\frac{M^{2}}{2} \sum_{k=-\infty}^{\infty}\left[-\frac{\delta^{2}(k)}{4 \pi^{2}}\left(\frac{1}{\varepsilon}+1-\log \frac{M^{2}}{\mu^{2}}\right)\left(\frac{1}{2 \pi^{2}|k|^{3}}\right) \Rightarrow-\frac{\zeta(3) M^{2}}{2 \pi^{2}}\right.
$$

which is contributing to the Bulk corrections.
The Brane corrections still require a $\overline{M S} /$ EFT counterterm $\sim \frac{1}{\varepsilon}+\log \frac{\Lambda^{2}}{\mu^{2}}$ Cutoff scale

Fig. $2 \mathrm{n}=1$ mass spectrum leading log (left) vs full one loop (right)

Mass Corrections (II)

Fig. $2 \mathrm{n}=1$ mass spectrum leading log (left) vs full one loop (right)

Mass Corrections (II)

Fig. 3 Weinberg mixing angle for higher modes

Fig. 4 Higgs vs Lepton NLP

Vertex Corrections (I)

Old Couplings improved

Vertex Corrections (I)

Old Couplings improved

Previously thought to be zero

Vertex Corrections (I)

Old Couplings improved

Fig. 5 Lepton/NLKP decay width

Previously thought to be zero

Vertex Corrections (II)

New couplings induced

$\rightarrow C_{i j k}$ is not cyclically symmetric! Non-Log terms violate 5D gauge invariance

\rightarrow No coupling to SM gluons for CP-even Higgs
\rightarrow CP-odd Higgs does

Vertex Corrections (II)

A selection:

Decay Widths and Branching Ratios

$\frac{1}{R}=1 \mathrm{TeV} \quad \Lambda R=20$

	$g_{0} g_{0}$	$q_{0} q_{0}$	$\bar{t}_{0} t_{0}$	$Q_{1} Q_{1}$
Gluon $_{2}$	56%	34%	6%	4%

Tree-level decays

(*Fine print: The branching rations only contain a selection of decay channels so far!)

What we have:

- A fully one-loop corrected mass spectrum telling us which decay channels are open!
- A comprehensive collection of $\mathbf{n}=\mathbf{2}$ KK-number violating Wilson coefficients implemented in CalcHep

...and now what?

What we have:

- A fully one-loop corrected mass spectrum telling us which decay channels are open!
- A comprehensive collection of $\mathbf{n}=\mathbf{2}$ KK-number violating Wilson coefficients implemented in CalcHep

Follow-up/Work in Progress:

- How about Collider signatures/limits?
- Implications for/from relic abundance?

Thanks!

