

Radiative Higgs Decay to a Fermion Pair

Xing Wang

University of Pittsburgh BF 2017 @ BNL Oct 12, 2017 Tao Han & XW, arXiv:1704.00790

Introduction

- * Higgs for the next 20 years!
- Since the Higgs discovery, only handful decay channels observed:

 $h \to \gamma \gamma, ZZ^*, WW^*, \tau \tau, (b\overline{b})$

- * A huge amount of data at future HL-LHC: $3 \text{ ab}^{-1} \rightarrow 10^8 \text{ Higg's}$
- * Search for rare decays.

 In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 \alpha$.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 lpha$.
- * Not always the case.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 lpha$.
- * Not always the case.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 \alpha$.
- * Not always the case.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 lpha$.
- * Not always the case.

- In SM, Fermionic decays establish interesting hierarchy, due to Yukawa couplings.
- * How about $h \to f\bar{f}\gamma$?
- * Naively suppressed by $Q_f^2 \alpha$.
- * Not always the case.

 $h \to f f \gamma$

 $h \to f f \gamma$

 $h \to f f \gamma$

 $M_{f\bar{f}}$ Distributions

$M_{f\bar{f}}$ Distributions

$M_{f\bar{f}}$ Distributions

EW+ γ dominated

$M_{f\bar{f}}$ Distributions

 $M_{f\bar{f}}$ Distributions

 $M_{f\bar{f}}$ Distributions

LHC Search for $\ell^+\ell^-\gamma$

- * BRs of $\ell^+\ell^-\gamma$ are comparable to $\mu^+\mu^-$.
- * Very promising considering the ATLAS/CMS projections of 7 σ for $h \rightarrow \mu^+ \mu^-$ at HL-LHC.

Channel	Signal	Background	Statistical Significance
	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity
$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47(7.79)
$60 < E_{\gamma} < 63 { m ~GeV}$	0.69	14.6	$3.13 \ (9.89)$
$p_{T\gamma} > 55 \text{ GeV}$	0.46	11.8	2.32(7.33)
$pp \rightarrow \gamma^* \gamma \rightarrow e^+ e^- \gamma$	1.06	27.0	3.53~(11.2)
$60 < E_{\gamma} < 63 { m ~GeV}$	1.06	17.0	4.45(14.1)
$p_{T\gamma} > 55 \text{ GeV}$	0.79	17.6	$3.26\ (10.3)$
$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66(5.24)
$27 < E_{\gamma} < 33 { m ~GeV}$	1.10	121	1.73 (5.48)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	95.9	1.61 (5.09)
$pp \rightarrow Z\gamma \rightarrow e^+e^-\gamma$	1.38	224	1.60 (5.05)
$27 < E_{\gamma} < 33 { m ~GeV}$	1.13	126	1.74(5.51)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	100	1.58(4.98)

	Channel	Signal	Background	Statistical Significance
separate chanr	nels	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity
	$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47 (7.79)
	$60 < E_{\gamma} < 63 { m ~GeV}$	0.69	14.6	3.13 (9.89)
	$p_{T\gamma} > 55 \text{ GeV}$	0.46	11.8	2.32(7.33)
	$pp \to \gamma^* \gamma \to e^+ e^- \gamma$	1.06	27.0	3.53(11.2)
	$60 < E_{\gamma} < 63 \text{ GeV}$	1.06	17.0	4.45 (14.1)
	$p_{T\gamma} > 55 \text{ GeV}$	0.79	17.6	3.26(10.3)
C	$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66 (5.24)
	$27 < E_{\gamma} < 33~{ m GeV}$	1.10	121	1.73(5.48)
	$p_{T\gamma} > 25 \text{ GeV}$	0.91	95.9	1.61 (5.09)
	$pp \to Z\gamma \to e^+e^-\gamma$	1.38	224	1.60(5.05)
	$27 < E_{\gamma} < 33 \text{ GeV}$	1.13	126	1.74 (5.51)
	$p_{T\gamma} > 25 \text{ GeV}$	0.91	100	1.58(4.98)

	Channel	Signal	Background	Statistical Significance
separate chanr	separate channels			with 0.3 (3) ab^{-1} luminosity
\langle	$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47(7.79)
	$60 < E_{\gamma} < 63 { m ~GeV}$	0.69	14.6	3.13 (9.89)
highly collimated	$p_{T\gamma} > 55 \text{ GeV}$	0.46	11.8	2.32(7.33)
mimic photon	$pp \to \gamma^* \gamma \to e^+ e^- \gamma$	1.06	27.0	3.53(11.2)
	$60 < E_{\gamma} < 63 { m ~GeV}$	1.06	17.0	4.45 (14.1)
	$p_{T\gamma} > 55 \text{ GeV}$	0.79	17.6	3.26(10.3)
\langle	$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66(5.24)
	$27 < E_{\gamma} < 33~{\rm GeV}$	1.10	121	1.73(5.48)
	$p_{T\gamma} > 25 \text{ GeV}$	0.91	95.9	1.61 (5.09)
	$pp \to Z\gamma \to e^+e^-\gamma$	1.38	224	1.60 (5.05)
	$27 < E_{\gamma} < 33 \text{ GeV}$	1.13	126	1.74(5.51)
	$p_{T\gamma} > 25 \text{ GeV}$	0.91	100	1.58(4.98)

Channel	Signal	Background	Statistical Significance
	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity
$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47 (7.79)
$60 < E_{\gamma} < 63 { m ~GeV}$	0.69	14.6	3.13 (9.89)
$p_{T\gamma} > 55 \text{ GeV}$	0.46	11.8	2.32(7.33)
$pp \rightarrow \gamma^* \gamma \rightarrow e^+ e^- \gamma$	1.06	27.0	3.53(11.2)
$60 < E_{\gamma} < 63 { m ~GeV}$	1.06	17.0	4.45 (14.1)
$p_{T\gamma} > 55 \text{ GeV}$	0.79	17.6	3.26(10.3)
$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66 (5.24)
$27 < E_{\gamma} < 33 { m ~GeV}$	1.10	121	1.73 (5.48)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	95.9	1.61 (5.09)
$pp \to Z\gamma \to e^+e^-\gamma$	1.38	224	1.60 (5.05)
$27 < E_{\gamma} < 33 { m ~GeV}$	1.13	126	1.74 (5.51)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	100	1.58(4.98)

 $\tau^+ \tau^- \gamma$

- * The dominant production mechanisms for the current LHC observation of $h \to \tau^+ \tau^-$ are VBF & boosted Higgs.
- * With an additional photon to trigger on, we can consider the leading production mechanism gluon fusion.

 $\sigma(WW, ZZ \to h \to \tau^+ \tau^-) = (4.2 \text{ pb}) \times (6.3\%) \approx 260 \text{ fb};$ $\sigma(gg \to h \to \tau^+ \tau^- \gamma) = (49 \text{ pb}) \times (0.1\%) \approx 50 \text{ fb}.$

- * Completely different decay mechanism, QED dominated.
- * Sensitive to the tau magnetic dipole moment [arXiv:1610.01601].

Charm-Yukawa Via Radiative Decay

- * Current searches for $h \to b\overline{b}$ via VH / VBF / highly boosted.
- * With an additional γ to trigger on, we could use LO ggF

$$gg \to h \to c\bar{c}\gamma$$

Compare

 $c \bar{c} \gamma$ vs. $J/\psi \gamma$

much larger BR: poor resolution: Require charm-tagging!

 10^{-4} vs. 10^{-7} $jj\gamma$ vs. $\mu\mu\gamma$

Charm-Yukawa Via Radiative Decay

- Current searches for $h \rightarrow bb$ via VH / VBF / highly boosted.
- * With an additional γ to trigger on, we could use LO $\sigma\sigma F$

 $gg \to h \to h$

 $c\bar{c}\gamma$ vs. $J/\psi_{10^{-4}}$

much larger BR: poor resolution: **Require charm-tagging!**

 $h \to c \overline{c} \gamma$

Total

/GeV10

10⁻²

 $E_{\gamma}[\text{GeV}]$

Total

OED

Results for $gg \to h \to c\bar{c}\gamma$

Numbers of events:

	Luminosity		Operating	Signal	Signal	Signal	Background
ϵ_b	ϵ_l		Point	(Total)	(QED)	$(\mathrm{EW}{+}\gamma)$	
10% 20%	1% 3%		Ι	683	252	431	3.84×10^7
50%	10%	3000 fb^{-1}	II	1537	567	970	1.25×10^8
			III	3459	1275	2184	6.51×10^{8}

✤ B/S ~ 10⁵.

 ϵ_c

20%

30%

45%

Τ

II

III

- 1. 2 jets plus a photon, with 2 jets (mis-)tagged as c-jets.
- 2. 3 jets, with 2 jets (mis-)tagged as c-jets and the 3rd jet mis-identified as a photon.
- Very difficult to reach the SM expectations.

Results for $gg \to h \to c \bar{c} \gamma$

Numbers of events:

				Luminosity	Operating	Signal	Signal	Signal	Background
	ϵ_c	ϵ_b	ϵ_l		Point	(Total)	(QED)	$\left \begin{array}{c} (\mathrm{EW} + \gamma) \end{array} \right $	
Ι	20%	10%	1%		т	683	959	/21	3.84×10^{7}
II	30%	20%	3%	Contraction of the	1	000	202	401	3.64×10
III	45%	50%	10%	3000 fb^{-1}	II	1537	567	970	1.25×10^8
					III	3459	1275	2184	6.51×10^8
								P	A STATISTICS

- 1. 2 jets plus a photon, with 2 jets (mis-)tagged as c-jets.
- 2. 3 jets, with 2 jets (mis-)tagged as c-jets and the 3rd jet mis-identified as a photon.

* Very difficult to reach the SM expectations.

Comparison

Method	κ_c upper limit projection	
	at HL-LHC (3 ab^{-1})	
$h \to c \bar{c} \gamma$ (this work)	6.3	
$h \to c\bar{c} + \text{fit}$	2.5	
h + c production	2.6	
Higgs kinematics	4.2 Perez et al. Brivio et al.	1505.06689 . 1507.02916
$h \to J/\psi\gamma$	50 Bishara et a	al. 1606.09253

Projected sensitivities for probing the $hc\bar{c}$ Yukawa coupling $\kappa_c = y_c^{\text{BSM}}/y_c^{\text{SM}}$ at the HL-LHC with various methods.

Summary

- Higgs radiative decay to a fermion pair is not necessarily suppressed by the Yukawa coupling.
- * The observability of $h \to \mu^+ \mu^- \gamma$, $e^+ e^- \gamma$ at LHC is comparable to $h \to \mu^+ \mu^-$.
- * With charm-tagging, $h\to c\bar c\gamma$ can be used to constrain the charm-quark Yukawa coupling.

Running Masses

Most significant corrections are from mass running (mf to mh)

Fermion	$\bar{m}_f(m_f)$	$\delta \bar{m}_f^{ m QCD}$	$\delta \bar{m}_f^{ m QED}$	$\bar{m}_f(m_h)$	$\Gamma^0_{h o f ar{f}}$
	[GeV]	[GeV]	[MeV]	[GeV]	$[\mathrm{keV}]$
b	4.18	-1.39	-5.72	2.78	1900
С	1.27	-0.657	-9.33	0.604	89.7
au	1.78	-	-27.2	1.75	251
μ	0.106	-	-4.05	0.102	0.852
e	0.511×10^{-3}	-	-2.20×10^{-2}	0.489×10^{-3}	1.96×10^{-5}

h

 $- \rightarrow$

 $\sim Q_f^2 \times \mathcal{O}(1\%)$

Decay Widths

	Inclusive of	corrections	Exclusive decay		
Decay	$\delta \Gamma \ (y_f^2 \alpha)$	$\delta \Gamma (y_t^2 \alpha^3, \alpha^4)$	$\Gamma(f\bar{f}\gamma) \;[{\rm keV}]$	$BR(f\bar{f}\gamma) \ [10^{-4}]$	
Channels	[keV]	$[\mathrm{keV}]$	$E_{\gamma}^{\rm cut} = 5/15 {\rm ~GeV}$	$E_{\gamma}^{\rm cut} = 5/15 {\rm ~GeV}$	
$h \rightarrow b\overline{b}$	-25.3	0.99	9.45/5.44	23/13	
$h \to c \bar{c}$	-1.17	0.91	2.48/1.73	6.1/4.2	
$h \to \tau^+ \tau^-$	-1.37	0.31	10.4/5.63	25/14	
$h \to \mu^+ \mu^-$	-4.72×10^{-2}	0.41	0.436/0.420	1.1/1.0	
$h \to e^+ e^-$	-1.29×10^{-6}	0.60	0.589/0.588	1.4/1.4	

 $\delta\Gamma_{\rm EW} = \Gamma^0 \left(\frac{2\delta m_f^{\rm QED}}{\bar{m}_f} + Q_f^2 \frac{\bar{\alpha}}{\pi} \frac{17}{4} + \Delta_{\rm weak} + \mathcal{O}(\alpha^2) \right) \xrightarrow{E_{\gamma}}{5 \text{ or } 15 \text{ GeV}} \text{ and } \Delta R_{\gamma f}, \ \Delta R_{\gamma \bar{f}} > 0.4$

Charm Tagging

- * c-jets are very similar to b-jets.
- c-tag efficiency is correlated with b-/light-jet rejection.
- We choose 3 working points:

Operating Point	ϵ_c	ϵ_b	ϵ_l
Ι	20%	10%	1%
II	30%	20%	3%
III	45%	50%	10%

ATL-PHYS-PUB-2015-001

Events Selection

Selection cuts:

 $p_{Tc} > 40(20) \text{ GeV} \qquad |\eta| < 2.5$ $p_{T\gamma} > 20 \text{ GeV} \qquad \Delta R > 0.4$ 100 < $m_{cc\gamma} < 150 \text{ GeV}$

Numbers of events:

Luminosity	Operating	Signal	Signal	Signal	Background
	Point	(Total)	(QED)	$(\mathrm{EW}{+}\gamma)$	
	I	683	252	431	3.84×10^7
3000 fb^{-1}	II	1537	567	970	1.25×10^8
	III	3459	1275	2184	6.51×10^8

Upper Bound

* If BSM significantly modifies the charm-Yukawa coupling by $y_c^{\rm BSM} = \kappa_c y_c^{\rm SM}$

The statistical significance

$$\sigma_{\rm SD} = \frac{N_{\rm S}^{\rm BSM}}{\sqrt{N_{\rm B}}} \simeq \frac{\kappa_c^2 N_{\rm S}^{\rm QED} + N_{\rm S}^{\rm EW+\gamma}}{\sqrt{N_{\rm B}}} \simeq \frac{\kappa_c^2 N_{\rm S}^{\rm QED}}{\sqrt{N_{\rm B}}}$$

2σ-bound on the charm-Yukawa coupling:

 $\kappa_c < 12.5 \ (7.0), \ 11.1 \ (6.3), \ 11.2 \ (6.3)$

for operating points I, II, III with a luminosity of 300 (3000) fb⁻¹.