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“Stealth Dark Matter” - case study

✦ New strongly-coupled SU(4) gauge sector “like” QCD with a 
plethora of composite states in the spectrum: all mass scales are 
technically natural for hadrons 

✦ New Dark fermions: have dark color and also have electroweak 
charges (W/Z,𝛾) 

✦ Dark fermions have electroweak breaking masses (Higgs) and 
electroweak preserving masses (not-Higgs)  

✦ A global symmetry naturally stabilizes the dark lightest baryonic 
composite states (e.g. DM is a stable dark neutron)

[LSD collab., Phys. Rev. D88 (2013) 014502]

[LSD collab., Phys. Rev. D89 (2014) 094508]

[LSD collab., Phys. Rev. D92 (2015) 075030]

[LSD collab., Phys. Rev. Lett. 115 (2015) 171803]
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Axion Dark Matter

• Axions were originally proposed to solve 
the Strong-CP problem 

• They are also considered a plausible 
DM candidate 

• The axion energy density at early times 
requires non-perturbative QCD input

Ωtot = 1.000(7) 
PDG 2014 

[Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791] 
[Preskill, Wise & Wilczek, Phys. Lett. B 120 (1983) 127-132]
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Axion mass from lattice simulations

[Bonati et al., 1512.06746]

[Berkowitz, Buchoff, ER., 1505.07455, PRD 92 (2015)]
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Non-perturbative calculation of QCD topology  
at finite temperature

[Trunin et al.,1510.02265][Petreczky et al.,1606.03145][Borsanyi et al.,1606.07494]

Great effort to control all systematic lattice 
effects in order to guide experiments. 

Challenging state-of-the art simulations.



Axion mass lower bound

[ADMX Website] 

[Berkowitz, Buchoff, ER, PRD 92 (2015) 034507]
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Axion mass lower bound

Lattice SU(3) 
Pure Glue

fa < (4.10±0.04) 1011 GeV 
ma > (14.6±0.1) μeV

[ADMX Website] 

[Berkowitz, Buchoff, ER, PRD 92 (2015) 034507]

axions < 100% of DM

smaller χ

control systematics of the 
non-perturbative physics 
through lattice methods

be able to derive the bound 
from first-principle results 



Axion mass lower bound

Lattice QCD with 
physical quarks

ma > (28±2) μeV

[ADMX Website] 
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[Lombardo, Nature News & Views]



Concluding remarks

✦Composite dark matter and Axion dark matter are viable interesting 
possibility with rich phenomenology 

✦Lattice methods can help in calculating direct detection cross 
sections, production rates at colliders, self-interaction cross sections 
and the axion mass bound. Direct phenomenological relevance and 
guide to experimental searches. 

✦Dark matter constituents can carry electroweak charges and still the 
stable composites are currently undetectable. Stealth cross section. 

✦Lowest bound for composite dark matter models: ~300 GeV 
(colliders+direct detection+lattice) 

✦Axions from QCD dynamics have a lowest mass bound ~20-50 μeV      
(cosmology+lattice)
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FIG. 2. The DM spin-independent scattering cross section per nu-
cleon evaluated for xenon is shown as the purple band obtained
from the SU(4) polarizability, where the width of the band cor-
responds to 1/3 < MA

F < 3 from low to high. The blue curve
and the light blue region above it is excluded by the LUX con-
straints [1]. The vertical, darker shaded region is excluded by
the LEP II bound on charged mesons [23]. The orange region
represents the limit at which direct detection experiments will
be unable to discriminate DM events from coherent neutrino re-
coil [39]. We emphasize that this plot is applicable for xenon, and
would require calculating Eq. (17) to apply to other nuclei.

would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [40]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [41–43] that warrant further investigation to
constrain or probe stealth DM.
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Lowest dimensional operators:
★ magnetic dipole (5) 
★ charge radius     (6) 
★ polarizability       (7)



The darkness of Composite Dark Matter

[Wikipedia]

[Bagnasco et al., hep-ph/9310290]

Most relevant interaction if constituents have Yukawa 
couplings!

Lowest dimensional operators:
★ magnetic dipole (5) 
★ charge radius     (6) 
★ polarizability       (7)
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“Stealth Dark Matter” model

• The field content of the model 
consists in 8 Weyl fermions 

• Dark fermions interact with the 
SM Higgs and obtain current/
chiral masses 

• Introduce vector-like masses for 
dark fermions that do not break 
EW symmetry 

• Diagonalizing in the mass 
eigenbasis gives 4 Dirac 
fermions  

• Assume custodial SU(2) 
symmetry arising when u ↔ d

3

Field SU(N)
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4
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TABLE I. Fermion particle content of the composite dark matter
model. All fields are two-component (Weyl) spinors. SU(2)

L

refers to the standard model electroweak gauge group, and Y is
the hypercharge. The electric charge Q = T

3

+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)

D

gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES

The fermions F u,d

i

transform under a global U(4) ⇥
U(4) flavor symmetry that is broken to [SU(2) ⇥ U(1)]4
by the weak gauging of the electroweak symmetry. From
this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)

L

, one U(1) subgroup

will be identified with U(1)

Y

, and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(N)

D

with electric
charges of Q ⌘ T

3,L

+ Y = ±1/2. We use the notation
where the superscript u and d (as in F u, F d and later  u,
 d,  u,  d) to denote a fermion with electric charge of
Q = 1/2 and Q = �1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by

L =

X

i=1,2

iF †
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�̄µD
i,µ

F
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X
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�̄µDj

i,µ

F j

i

,

(1)
where the covariant derivatives are
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(5)

with the interactions among the electroweak group and the
new SU(N)

D

. Here Y u

= 1/2, Y d

= �1/2 and tb

are the representation matrices for the fundamental N of
SU(N)

D

.
The vector-like mass terms allowed by the gauge sym-

metries are

L � M
12

✏
ij

F i

1

F j

2

�Mu

34

F u

3

F d

4

+Md

34

F d

3

F u

4

+h.c., (6)

where ✏
12

⌘ ✏
ud

= �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M

12

explicitly breaks the
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)

diag

⇥ U(1) where the SU(2)

diag

is identified with
SU(2)

L

. The mass terms Mu,d

34

explicitly break the re-
maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)

Y

. (In the special case
when Mu

34

= Md

34

, the global symmetry is accidentally en-
hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by

L � yu

14

✏
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4
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3

+ h.c., (7)

where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =

(0 v/
p

2)

T , with v ' 246 GeV. Inserting the vev
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yu14 = yd14 yu23 = yd23 Mu
34 = Md

34
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