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Outline
• General remarks on heavy quark masses 

– Different schemes. Renormalons.
– Motivations for a precisse determination.
– Recent results.

• Treatment of experimental data

– How to combine data from different experiments?
– How to treat errors and correlations?
– Results.

• Theoretical analysis

– Analytic properties. OPE expansion. Four loop results.
– Estimate of (theoretical) perturbative errors.

• Results for charm mass



INTRODUCTIONINTRODUCTION



Remarks on heavy quark masses 
• Confinement          mq not physical observable

• Parameter in QCD Lagrangian formal definition (as strong coupling)

• Renormalization and scheme dependent object
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Why high precision?
Strong dependence in flavor processes Constrains new physics

SB X γ→

K π ν ν+ +→

Taken from P. 
Gambino CKM’08

NNLO QCD computations for charm contributions

Strong charm mass (scheeme) dependence 
in NLO matrix elements       Misiak & Gambino



Spectral moments of inclusive B decays (nonrelativistic)

Charmominum sum rules (relativistic)

Lattice

Taken from A. Hoang

Flavor institute CERN 2008

Determinations of mc



Relativistic sum rules
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effEffective energy range: E =  (assimptotically correct for large n)cm
n

n=1 is the cleanest moment, and we will focuss on it for the 
analyses presented in this seminar. 

QCD
cm

n
Λ

• Since we want to apply perturbation theory for Wilson coefficients.

• Otherwise the OPE converges badly.

(n = 2 is also fine)

Relativistic sum rules



Maier et al (08) [5]

Kühn et al (‘08)[3] exp( ) =1.286 0.009 0.009 0.002c cm m α μ± ± ±

Boughezal et al (‘08) [4] exp1.295 0.012 0.009 0.003α μ± ± ±

Determination of mc from sum rules

exp1.277 0.006 0.014 0.005α μ± ± ±

Only for n = 1 [3,4], 2 [5] 3-loops in pert. 
theory. Updated experimental data.

Fixed order analysis

mαμ μ=
(correlated variation)



Only for n = 1 [3,4], 2 [5] 3-loops in pert. 
theory. Updated experimental data.

Fixed order analysis

mαμ μ=
(correlated variation)

Maier et al (08) [5]

Kühn et al (‘08)[3] exp( ) =1.286 0.009 0.009 0.002c cm m α μ± ± ±

Boughezal et al (‘08) [4] exp1.295 0.012 0.009 0.003α μ± ± ±

exp1.277 0.006 0.014 0.005α μ± ± ±

Determination of mc from sum rules

Similar for bottom mass determinations

Tiny errors! ( underestimated ? )

Need for more general analysis



Experimental dataExperimental data



Experimental data: charm
Narrow resonancesNarrow resonances

Narrow-width

approximation



SubSub--threshold and thresholdthreshold and threshold BES 1999 *BES 1999 *

Experimental data: charm

* Means that there is no information on the splitting of systematic errors in correlated and uncorrelated



SubSub--threshold and thresholdthreshold and threshold BES 2001BES 2001

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold BES 2004BES 2004

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold BES 2006 (I)BES 2006 (I)

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold BES 2006 (II)BES 2006 (II)

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold BES 2009 *BES 2009 *

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold Crystal Ball 1986Crystal Ball 1986

Experimental data: charm



Gap regionGap region Crystal Ball 1990 (I)Crystal Ball 1990 (I)

Experimental data: charm



Gap regionGap region Crystal Ball 1990 (II)Crystal Ball 1990 (II)

Experimental data: charm



High energy regionHigh energy region CLEO 1979CLEO 1979

Experimental data: charm



High energy regionHigh energy region CLEO 1998CLEO 1998

Experimental data: charm



High energy regionHigh energy region CLEO 2007CLEO 2007

Experimental data: charm



SubSub--threshold and thresholdthreshold and threshold CLEO 2009 *CLEO 2009 *

Experimental data: charm



High energy regionHigh energy region MDMD--1 19961 1996

Experimental data: charm



Threshold and high energyThreshold and high energy PLUTO 1982 *PLUTO 1982 *

Experimental data: charm



Threshold regionThreshold region MARKI 1976 *MARKI 1976 *

Experimental data: charm



Gap regionGap region MARKI 1977 *MARKI 1977 *

Experimental data: charm



Gap regionGap region MARKII 1979MARKII 1979

Experimental data: charm



Threshold and gap regionsThreshold and gap regions MarkMark--I  1981I  1981

Experimental data: charm



Perturbation theoryPerturbation theory
• Only where there is no data

• Assign a conservative 10% error 
to reduce model dependence

M1 6% 

Mn>1 < 1%

Experimental data: charm



Data used in Hoang and Jamin (2004)Data used in Hoang and Jamin (2004)

Experimental data: charm



Data used in Hoang and Jamin (2004)Data used in Hoang and Jamin (2004)

• Perturbation theory only in 
gap and region with no data

• 10% error assigned as well

21% of the first 
moment

Experimental data: charm

exp
1 0.70Mδ =



Data used in KData used in Küühn et al (2001), Boughezal et al and Narisonhn et al (2001), Boughezal et al and Narison

Use perturbation theory 
right from here!

Even though there is 
data available...

Finite energy sum-rule?

Underestimates errors! 
(they assing only naive 
theory error)

30% of the first 
moment!

Experimental data: charm

exp
1 0.31Mδ =



Data used in KData used in Küühn et al (2004, 2005, ...)hn et al (2004, 2005, ...)

Use perturbation theory 
right from here!

Even though there is 
data available...

30% of the first 
moment!

Experimental data: charm

exp
1 0.31Mδ =

Finite energy sum-rule?

Underestimates errors! 
(they assing only naive 
theory error)



Data used in Bodenstein et alData used in Bodenstein et al

Use perturbation theory 
right from here!

Even though there is 
data available...

Experimental data: charm



Fit procedure



Fit procedure

1. Recluster data. Clusters not necessarily equally sized.

Number of clusters and size of cluster according to the 
structure of the data 



Fit procedure

2.  Calculate the energy of the cluster. One weights the 
energy of the data points inside the clusters with their 
errors.
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Fit procedure

3.  Fit the value of R for each cluster. Data is allowed to “move” within its systematic 
error. The method renders errors and correlations among various clusters. One 
can then calculate errors and correlations for the moments.
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Fit parameters

Experimental data



Fit procedure

background (free normalization)

Data below threshold (only background), first cluster

Data above threshold (signal + background)

1-σ constraint 
to auxiliary 
parameters

2total χ



Fit procedure
• Method inspired by a similar one in Hagiwara, Martin & Teubner.

• Avoids the problems of a regular      in which the systematic 
errors are 100% correlated

2χ

Auxiliary parametersid →

Prediction for moments Mn = mn10n+1 GeVn+1

M1 = 21.38 ± 0.20stat ± 0.46sys
M2 = 14.91 ± 0.18stat ± 0.29sys
M3 = 13.10 ± 0.19stat ± 0.25sys
M4 = 12.49 ± 0.19stat ± 0.23sys

We also predict correlations among the various moments, useful for simultaneous fits.



Moments budget
Narrow resonances

3.73 – 4.8 GeV

4.8 – 7.25 GeV

7.25 – 10.54 GeV

10.54 GeV – Infinity

0.5%

0.3%

0.03%

0.04%

0.002%



Minimal data selection
Data sets 1, 2, 5, 6, 
9, 12, 13, and 14

BES, CrystalBall, 
CLEO and MD1



Standard data selection
All Data sets except 
16,17 and 19

All periments except some 
MARKI and MARKII



Standard data selection
All Data sets except 
16,17 and 19

All periments except some 
MARKI and MARKII

exp
1Error in  from unknown continuum

where a 10% theory error has been 
assigned: 0.13

M

Acceptable model 
dependence !



Maximal data selection
All Data sets

All experiments



Comparison selections



Fit results

Below threshold

1 cluster



Fit results

Below resonances

2 clusters



Fit results

First resonance

20 clusters



Fit results

Second resonance

20 clusters



Fit results

Continuum data

10 clusters



Comparison with other analyses

• Blue lines use outdated experimental data for narrow resonances.

• Different analyses tend to agree better for large n      Narrow resonances dominate



Theoretical developmentsTheoretical developments



Mass and coupling running

• Excellent convergence of the running of quark masses and QCD coupling

• No failure of perturbative RG-evolution even down to 1 GeV

Use of ( ) is fine!c cm m



Methods in perturbation theory
Fixed orderFixed order

Expanded Expanded 
outout

IterativeIterative
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Methods in perturbation theory
Fixed orderFixed order

Expanded Expanded 
outout

IterativeIterative

Numerical solution for mass: 

sometimes there is no solution

Analytic solution for mass

always has a solution!
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Methods in perturbation theory
Fixed orderFixed order

 and  independentmαμ μ

Expanded Expanded 
outout

IterativeIterative
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Methods in perturbation theory
Fixed orderFixed order

 and  independentmαμ μ
residual  and  dependence 
due to truncation of  series

mαμ μ
α

Expanded Expanded 
outout

IterativeIterative

 residual  dependence
renders correct  dependence 

   to the order of truncation
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Contour improved analysis
First applied to hadronic tau decays   Liberder & Pich (‘92)

rearrangemenNow  depends on s   of higher order contribut nst ioμ →

Reweights threshold versus
continuum effects

2 - loops

Hoang, Jamin

(2004)Residual dependence on αμ

2
2 2

2(1 )      
4 ( )c m

qz z
mα αμ μ

μ
→ − =



z

Contour improved analysis
First applied to hadronic tau decays   Liberder & Pich (‘92)

Calculations easy to understand through vacuum polarization function

rearrangemenNow  depends on s   of higher order contribut nst ioμ →

2
2 2

2(1 )      
4 ( )c m

qz z
mα αμ μ

μ
→ − =Reweights threshold versus

continuum effects

2 - loops

Hoang, Jamin

(2004)

However one can derive analytic expressions (!) 
using properties of the running of the strong 
coupling constant.

Contour improved methods are (perturbatively) sensitive to the value of (0)Π

Residual dependence on αμ



Nonperturbative contribution

already discussed gluon condensate 
distribution

Renormalization group invariant 
scheme for the gluon condensate

200% error

Compatible with 0Contribution to the moments

n=1       n=2      n=3      n=4

0.02%  0.05%  0.08%  0.1%



State of the art of calculations
0,0 3

0,0

,

 For n= ,  the  coefficients are known at O( )

 For n 4,  are known in a semianalytic aproach (Padé approximants)
this method renders a central value and an error
 The rest o

2,

f  can 

31 n s

n

a b
n

C
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C

α

≥

i
i

i be deduced by RGE evolution

Kühn et al, Maier et al,

Boughezal et al

Hoang, VM & Zebarjad

Kiyo et al

Greynat et al
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State of the art of calculations
0,0 3

0,0

,

 For n= ,  the  coefficients are known at O( )

 For n 4,  are known in a semianalytic aproach (Padé approximants)
this method renders a central value and an error
 The rest o

2,

f  can 
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C
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≥

i
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i be deduced by RGE evolution

Kühn et al, Maier et al,

Boughezal et al

A first look into the various methods

2GeV 4GeVm αμ μ≤ = ≤

( )
2GeV 4GeV

m c cm m

α

μ
μ

=

≤ ≤

Hoang, VM & Zebarjad

Kiyo et al

Greynat et al



Exclude regions with
, ( )m c cm mαμ μ <

3( ) analyses
first moment

sO α

Contours in the  planemαμ μ−

( )  , 4GeVc c mm m αμ μ≤ ≤



3( ) analyses
first moment

sO α

Contours in the  planemαμ μ−

( )  , 4GeVc c mm m αμ μ≤ ≤

Kühn et al path !

mαμ μ=



Various error estimates
3 GeV

2 GeV 4 GeV
m

α

μ
μ

=
≤ ≤Kühn

( )
2 GeV 4 GeV

m c cm m

α

μ
μ

=
≤ ≤

Double variation

3( ) analyses, first momentsO α

2 GeV ( ) 4 GeVmαμ μ≤ = ≤
( )  , 4GeVmm m αμ μ≤ ≤



ResultsResults



Convergence of errors

Using double variation all methods have similar values and errors

stat sys th( ) = 1.277 0.006 0.013 0.019 0.009 0.002

            = 1.277 0.025
c c GGm m α± ± ± ± ±

±

Result for ( ) 0.1184 0.0021s Zmα = ±



Results



Glimpse on higher moments
Using only iterative method

Only perturbative errors

Results including 
gluon condensate

• Perfect agreement for central values

• Very similar error bars



65% of the first moment 
for bottom sum rules !!

Perturbative QCD

Aren’t we comparing theory to theory?

10% error gives a huge error to the 
total moment

Perturbation theoryPerturbation theory

Situation for bottom?

+ same issues with 
perturbative analysis



Comparison to similar analyses

4-loops

lattice data

psedoscalar

Sum rules 3-loops

Sum rules

4-loops

weighted finite energy 
QCD sum rules



Comparison to similar analyses
Sometimes it is  because different analyses
us different 

hard to co
values of 

mpare
e ( )s Zmα

These lattice analyses simultaneously 
fit for ( ) and ( )c c s Zm m mα

Extrapolation to a 
common  valuesα



Conclusions and outlook
• It is essential to have a reliable error estimate for the charm mass.

• Concerning relativistic sum rules, a revision of perturbative errors was mandatory.

• Experimental input must be treated with care (combining various sets of data, 
correlations, systematic errors …)

• Perturbative QCD should be used only where there is no data, and asigning a    
conservative error.

- For charm PQCD is only a small fraction of the moment small impact.

• The analysis can be easily extended to other correlators connection to lattice

• It can also be used to determine the bottom mass

Stay tunned for updated numbers on 
charm, and for results on bottom mass 
and pseudoscalar correlators.

stat sys th( ) = 1.277 0.006 0.013 0.019 0.009 0.002

            = 1.277 0.025
c c GGm m α± ± ± ± ±

±

Result for ( ) 0.1184 0.0021s Zmα = ±



Back up slidesBack up slides



Size of neglected terms



Narrow resonancesNarrow resonances

Experimental data: bottom



Babar dataBabar data

Experimental data: bottom



65% of the first moment 
for bottom sum rules !!

Perturbative QCD

Aren’t we comparing theory to theory?

10% error gives a huge error to the 
total moment

Perturbation theoryPerturbation theory

Experimental data: bottom



Stability of choices

Different clusteringDifferent cluster 
energy definition

Different correlation 
for some datasets

Different correlation between 
narrow resonances and data

Default: widths 50% correlated among themselves and with the continuous data sets.

For those sets with no information on correlations, assume a 100% correlation. 


