Driving Missing Data at the LHC

Kemal Ozeren

UCLA

Loopfest 2011

on behalf of the BlackHat collaboration

Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, D. Forde, S. Hoeche, H. Ita, D. A. Kosower, D. Maitre, K. Ozeren

Outline

SUSY search at LHC, at 7 TeV

Estimating backgrounds

Role of QCD theory

SUSY searches

- Gluinos/squarks are pair produced
- Generic signature is MET + jets

- How can SM mimic this?
 - $W \rightarrow I^{\pm} \nu$ with undetected lepton
 - QCD with mismeasured jet

• $Z \rightarrow \nu \overline{\nu}$ Irreducible background - subject of this talk

Data Driven Background Estimation

• CMS uses photons to estimate Z (Incandela's Group)

- Can also use $Z \rightarrow \mu \overline{\mu}$, but γ has better statistics
- So what is the conversion factor R? (and its error)

See later in this talk!

Photons at Colliders

- Two types of photon prompt and fragmentation
- Z production related to first kind
- Require isolated photons to remove the fragmentation contribution

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

fragmentation

- No concrete distinction in pQCD
- We want to limit hadronic activity close to photon
- Two approaches:
 - 1. Use (non perturbative) fragmentation functions
 - 2. Define an observable for which frag. contribution is zero

Photon Isolation a la Frixione [hep-ph/9801442]

[see Jaeger, Williams]

- In pQCD, have to be careful to preserve Infrared Safety
- Can't veto QCD radiation arbitrarily!
- Frixione: remove frag. photons in an IR safe way

$$\sum_{i} E_{iT} \theta(\delta - R_{i\gamma}) \le H(\delta)$$
$$H(\delta) = E_{T}^{\gamma} \epsilon \left(\frac{1 - \cos \delta}{1 - \cos \delta_{0}}\right)^{n}$$

• Important: $H(\delta) \rightarrow 0$ as $\delta \rightarrow 0$: soft radiation allowed close to γ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• We choose $\epsilon = 0.025, \, \delta_0 = 0.3, \, n = 2$

QCD Predictions

Next-to-leading order predictions are needed to control uncertainties in LHC predictions

Need for NLO

- reduced scale uncertainties: $\mathcal{O}(50\%) \rightarrow \mathcal{O}(10\%)$
- can study appropriate scale to use
- beginnings of jet structure

But severe technical difficulty... need to automate!

- complicated IR structure of QCD
- traditional bottleneck: virtual corrections
- dramatic progress last \sim 3 years
- BlackHat, CutTools, Madloop, Rocket, Samurai ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BlackHat

- Implementation of modern generalised unitarity cut method
- Evaluates coefficients of integrals:

$$A = R + \sum_{i} d_{i} + \sum_{i} c_{i} + \sum_{i} b_{i} + \sum_{i} b_{i}$$

- High-multiplicity one-loop QCD amplitudes
- Speed critical require fast trees Berends Giele, BCFW, Grassmanian(new!) → 90-95% of computing time spent on trees

 Extremely powerful e.g. W + 4 jet [BlackHat Collaboration 1009.2338]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Setup

- We calculate the ratio Z/γ in association with 2 jets, following the CMS cuts (3 jets coming soon)
- Use SHERPA for real emission, integration and process management

[Gleisberg, Hoeche, Krauss, Schonherr, Schumann, Siegert, Winter]

• The critical variables are

$$H_T = \sum_{\text{jets}} E_T^{\text{jets}}, \qquad \overrightarrow{\text{MET}} = -\sum_{\text{jet}} \overrightarrow{p}_{\text{jet},T}$$

three sets of cuts:

1.
$$H_T > 300$$
, $|\overline{\text{MET}}| > 250$ high MET

 2. $H_T > 500$, $|\overline{\text{MET}}| > 150$ high H_T

 3. $H_T > 300$, $|\overline{\text{MET}}| > 150$ "baseline"

impose

$$\Delta(\Phi)(\overrightarrow{\text{MET}}, \text{jet}) > 0.5$$

(日) (日) (日) (日) (日) (日) (日)

to suppress QCD multijet background

Analysis Tools

- NLO calculations often very computationally intensive
 → don't want to run again and again for different cuts
- solution: store events and apply analysis cuts later
- ROOT ntuple files are tailor made for this purpose. Store event momenta and weights:

$$M^{\rm loop} = A + B \ln \mu + C \ln^2 \mu$$

- Can change scales/pdfs/jet definitions after the run
- Experimentalists fluent in this framework
 → just give them the ntuples
- Health warning: you can tighten, but not loosen the cuts

process	LO	ME+PS	NLO
$\gamma + 2j$	$2.220^{+0.762}_{-0.526}$	2.110	$2.609^{+0.159}_{-0.241}$
Z + 2j	$0.521^{+0.180}_{-0.124}$	0.478	$0.560^{+0.012}_{-0.043}$
ratio	0.235	0.226	0.214

- Matrix Element + Parton Shower (ME+PS) as implemented in Sherpa. Parton shower matched to exact LO MEs, using CKKW to avoid double counting.
- Usual prescription for theoretical uncertainty scale variation
- For ratios this is problematic, as variation mostly cancels
- We estimate the error as difference between NLO and ME+PS results

 $\rightarrow 5-10\%$

 Encouraging agreement between very different calculation schemes

Excellent agreement between different theoretical approaches

Summary

- CMS uses γ +jets measurement to predict Z+jets
- Important background to SUSY (MET+jets)
- Extrapolation calls for precise theory prediction
 → ratio is calculated in pQCD
- I presented a NLO+MEPS study using BlackHat+Sherpa
- Our results used directly for estimating error in γ/Z conversion in CMS analysis