# LoopFest X

#### Radiative corrections for the LHC and future colliders

 $t\overline{t} + \gamma$  production and the top quark electric charge

#### Markus Schulze

#### in collaboration with K. Melnikov and A. Scharf

[Phys.Rev. D83 (2011) 074013 ]



# $t\bar{t}$ pairs in association with a photon

#### cross section for lepton+jets channel



## $t\overline{t}$ pairs in association with a photon



## $t\bar{t}$ pairs in association with a photon



# $t \bar{t}$ pairs in association with a photon

#### cross section for lepton+jets channel



#### **Physics motivation**

- measurement of electromagnetic couplings
- forward-backward asymmetry
- control sample for  $t\overline{t}$  + Higgs, rare SM process

### Top quark electric charge measurement

#### How well do we know the top quark electric charge?

Until recently, models with an exotic top quark could well describe experimental data.



#### How well do we know the top quark electric charge?

Until recently, models with an exotic top quark could well describe experimental data.



Markus Schulze, Johns Hopkins University

## Top quark electric charge measurement

DZero, 370 pb<sup>-1</sup>: "First determination of the top quark charge" (2007)

 $\Rightarrow$  Fraction of exotic top quarks < 80% at 90% C.L.

#### CDF 5.6 fb<sup>-1</sup> (2011): recent measurement

- 1) identify W-boson charge through lepton charge
- 2) pair b-jet with W-boson (topfitter with mt,mW input)
- 3) measure b-jet charge (JetCharge Algorithm)

#### assign:

SM top quark charge  $\leftrightarrow Q(W) \cdot Q(\text{bjet}) < 0$ XM top quark charge  $\leftrightarrow Q(W) \cdot Q(\text{bjet}) > 0$ 

**result**: 416 SM events vs. 358 XM events  $\Rightarrow$  Exclusion of XM hypothesis with 95% C.L.



How well can we measure  $Q_t$  from  $t\bar{t} + \gamma$  at hadron colliders?

Photon couples to all charged particles.

We are interested in the correlation  $\sigma_{t\bar{t}\gamma}(|Q_{top}^2|)$ . Charge measurement is mainly a counting experiment. NLO normalization is important!

Leading order analysis : Baur, Buice, Juste, Orr, Rainwater (2005, 2007)

• At the LHC with 10 fb<sup>-1</sup> an accuracy of 10% on  $Q_t$  is feasible.

 $\otimes$   $\operatorname{i} e Q$ 

• Accuracy limited by theoretical scale uncertainty. "If scale uncertainty reduced to 10%, an improvement in precision by a factor of two seems possible"

How well can we measure  $Q_t$  from  $t\bar{t} + \gamma$  at hadron colliders?

 $_{\otimes}$  ieQ

Photon couples to all charged particles.

We are interested in the correlation  $\sigma_{t\bar{t}\gamma}(|Q_{top}^2|)$ . Charge measurement is mainly a counting experiment. NLO normalization is important!

Next-to-leading order QCD calculation: Duan,Ma,Zhang,Han,Guo,Wang (2009)

- small/large K-factor at the Tevatron/LHC
- stable top quarks

We want to realistically describe hadronic production of  $t\bar{t} + \gamma$  at NLO QCD.

$$pp \rightarrow t\bar{t} + \gamma \rightarrow b\bar{b} \ \ell \nu \ jj + \gamma$$
 is a 2  $\rightarrow$  7 process.

This is very complicated at NLO QCD.

#### What is important?

- decays of top quarks: *realistic final state*
- spin correlations: *acceptances*
- photon radiation in decay: *large contribution*
- NLO corrections in production & decay: normalization, scale dependence, leading soft/collinear emissions

#### What can be approximated?

- largely off-shell top quarks, W's: neglect non-resonant contributions
  - $\Rightarrow$  apply narrow width approximation valid up to  $\mathcal{O}(\alpha_s \Gamma/m)$
- neglect shower effects and higher order threshold corrections: observables under consideration should not be very sensitive

Top quark decays

• replace top quark on-shell spinors by spinorial currents of the decay process:

$$\bar{u}(p_t) \rightarrow \bar{\tilde{u}}(p_t) = \mathcal{M}(t \rightarrow b\ell^+ \nu) \frac{\mathrm{i}(p_t + m_t)}{\sqrt{2m_t \Gamma_t}}$$

• plug this *top decay spinor* into the production process:

$$|\mathcal{M}_{\text{tree}}|^2 = |\bar{\tilde{u}}(p_t)\,\tilde{\mathcal{M}}(ab \to \bar{t}t)\,\tilde{v}(p_{\bar{t}})|^2 + \mathcal{O}(\frac{\Gamma_t}{m_t})$$

• easy to extend to next-to-leading order QCD

[Campbell,Ellis,Tramontano]



Virtual corrections

D-dimensional generalized unitarity + OPP reduction
 [Ellis,Giele,Kunszt,Melnikov]
 [Ossola,Pittau,Papadopoulos]

Virtual corrections

• D-dimensional generalized unitarity + OPP reduction

[Ellis,Giele,Kunszt,Melnikov] [Ossola,Pittau,Papadopoulos]

• we obtain primitive amplitudes with photons through linear combinations of gluon primitive amplitudes:



Virtual corrections

• D-dimensional generalized unitarity + OPP reduction

[Ellis,Giele,Kunszt,Melnikov] [Ossola,Pittau,Papadopoulos]

• we obtain primitive amplitudes with photons through linear combinations of gluon primitive amplitudes:



Virtual corrections

• D-dimensional generalized unitarity + OPP reduction

[Ellis,Giele,Kunszt,Melnikov] [Ossola,Pittau,Papadopoulos]

• we obtain primitive amplitudes with photons through linear combinations of gluon primitive amplitudes:



Virtual corrections

• D-dimensional generalized unitarity + OPP reduction

[Ellis,Giele,Kunszt,Melnikov] [Ossola,Pittau,Papadopoulos]

• we obtain primitive amplitudes with photons through linear combinations of gluon primitive amplitudes:



• second independent calculation: OPP applied to Feynman diagrams

Real corrections

• dipole subtraction with restrictions on resolved dipole phase space ( $\alpha$  parameter)

[Catani,Dittmaier,Seymour,Trocsanyi] [Nagi,Trocsanyi] [Bevilacqua,Czakon,Papadopoulos,Pittau,Worek] [Campbell,Ellis,Tramontano]

• dipoles for top decay kinematics we added  $\alpha$  dependence

- [Campbell,Ellis,Tramontano]
- all contributions are independent of variations of  $\alpha$

coupling the photon at NLO

Master formula:  $d\sigma \stackrel{\text{NWA}}{=} d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left( d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$ 

coupling the photon at NLO

Master formula:  $d\sigma \stackrel{\text{NWA}}{=} d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left( d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$ expand in  $\alpha_s$ :  $\mathrm{d}\sigma^{\delta\mathrm{NLO}} = \, \mathrm{d}\sigma^{\delta\mathrm{NLO}}_{t\bar{t}\gamma} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{\bar{t}}$ **NLC** 

coupling the photon at NLO

Master formula:  $d\sigma \stackrel{\text{NWA}}{=} d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left( d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$ expand in  $\alpha_s$ :  $\mathrm{d}\sigma^{\delta\mathrm{NLO}} = \, \mathrm{d}\sigma^{\delta\mathrm{NLO}}_{t\bar{t}\gamma} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{\bar{t}}$ +  $\mathrm{d}\sigma_{t\bar{t}\gamma}^{\mathrm{LO}} \left(\mathrm{d}\mathcal{B}_{t}^{\delta\mathrm{NLO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}} + \mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\delta\mathrm{NLO}}\right)$ 

coupling the photon at NLO

Master formula:  $d\sigma \stackrel{\text{NWA}}{=} d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left( d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$ expand in  $\alpha_s$ :  $\mathrm{d}\sigma^{\delta\mathrm{NLO}} = \, \mathrm{d}\sigma^{\delta\mathrm{NLO}}_{t\bar{t}\gamma} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t} \, \mathrm{d}\mathcal{B}^{\mathrm{LO}}_{\bar{t}}$ +  $\mathrm{d}\sigma_{t\bar{t}\gamma}^{\mathrm{LO}}\left(\mathrm{d}\mathcal{B}_{t}^{\delta\mathrm{NLO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}}+\mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\delta\mathrm{NLO}}\right)$ **NLC** +  $\mathrm{d}\sigma_{t\bar{t}}^{\delta\mathrm{NLO}}\left(\mathrm{d}\mathcal{B}_{t\gamma}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}}+\mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\mathrm{LO}}\right)$ 

Markus Schulze, Johns Hopkins University

coupling the photon at NLO

 $\mathrm{d}\sigma \stackrel{\mathrm{NWA}}{=} \mathrm{d}\sigma_{t\bar{t}\gamma} \,\mathrm{d}\mathcal{B}_t \,\mathrm{d}\mathcal{B}_{\bar{t}} + \,\mathrm{d}\sigma_{t\bar{t}} \left(\mathrm{d}\mathcal{B}_{t\gamma} \,\mathrm{d}\mathcal{B}_{\bar{t}} + \mathrm{d}\mathcal{B}_t \,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}\right)$ Master formula: expand in  $\alpha_s$ :  $\mathrm{d}\sigma^{\delta\mathrm{NLO}} = \,\mathrm{d}\sigma^{\delta\mathrm{NLO}}_{t\bar{t}\gamma}\,\mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t}\,\mathrm{d}\mathcal{B}^{\mathrm{LO}}_{\bar{t}}$ +  $\mathrm{d}\sigma_{t\bar{t}\gamma}^{\mathrm{LO}}\left(\mathrm{d}\mathcal{B}_{t}^{\delta\mathrm{NLO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}}+\mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\delta\mathrm{NLO}}\right)$ +  $\mathrm{d}\sigma_{t\bar{t}}^{\delta\mathrm{NLO}}\left(\mathrm{d}\mathcal{B}_{t\gamma}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}}+\mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\mathrm{LO}}\right)$ +  $\mathrm{d}\sigma_{t\bar{t}}^{\mathrm{LO}} \left(\mathrm{d}\mathcal{B}_{t\gamma}^{\delta\mathrm{NLO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}} + \mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}} \,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\delta\mathrm{NLO}}\right)$ 

coupling the photon at NLO

 $\mathrm{d}\sigma \stackrel{\mathrm{NWA}}{=} \mathrm{d}\sigma_{t\bar{t}\gamma} \,\mathrm{d}\mathcal{B}_t \,\mathrm{d}\mathcal{B}_{\bar{t}} + \,\mathrm{d}\sigma_{t\bar{t}} \left(\mathrm{d}\mathcal{B}_{t\gamma} \,\mathrm{d}\mathcal{B}_{\bar{t}} + \mathrm{d}\mathcal{B}_t \,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}\right)$ Master formula: expand in  $\alpha_s$ : **NLO**  $\mathrm{d}\sigma^{\delta\mathrm{NLO}} = \,\mathrm{d}\sigma^{\delta\mathrm{NLO}}_{t\bar{t}\gamma}\,\mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t}\,\mathrm{d}\mathcal{B}^{\mathrm{LO}}_{t}$ +  $\mathrm{d}\sigma_{t\bar{t}\gamma}^{\mathrm{LO}} \left(\mathrm{d}\mathcal{B}_{t}^{\delta\mathrm{NLO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}} + \mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\delta\mathrm{NLO}}\right)$ +  $\mathrm{d}\sigma_{t\bar{t}}^{\delta\mathrm{NLO}}\left(\mathrm{d}\mathcal{B}_{t\gamma}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}}+\mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}}\,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\mathrm{LO}}\right)$ +  $\mathrm{d}\sigma_{t\bar{t}}^{\mathrm{LO}} \left(\mathrm{d}\mathcal{B}_{t\gamma}^{\delta\mathrm{NLO}} \,\mathrm{d}\mathcal{B}_{\bar{t}}^{\mathrm{LO}} + \mathrm{d}\mathcal{B}_{t}^{\mathrm{LO}} \,\mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\delta\mathrm{NLO}}\right)$ +  $\mathrm{d}\mathcal{B}_{t\gamma}^{\mathrm{LO}} \mathrm{d}\mathcal{B}_{\bar{t}}^{\delta\mathrm{NLO}} + \mathrm{d}\mathcal{B}_{t}^{\delta\mathrm{NLO}} \mathrm{d}\mathcal{B}_{\bar{t}\gamma}^{\mathrm{LO}}$ 

Markus Schulze, Johns Hopkins University

$$p\bar{p} \rightarrow t\bar{t} + \gamma \rightarrow b\bar{b}\;\ell\nu\;jj + \gamma$$

The observable:



| $p_{\mathrm{T}}^{\ell} > 20~\mathrm{GeV}$         | $ y^\ell  < 1.1$                |
|---------------------------------------------------|---------------------------------|
| $p_{\mathrm{T}}^{\gamma} > 10~\mathrm{GeV}$       | $ y^{\gamma}  < 1.1$            |
| $p_{\mathrm{T}}^{\mathrm{jet}} > 15~\mathrm{GeV}$ | $ y^{ m jet}  < 2$              |
| $p_{\rm T}^{\rm miss} > 20~{ m GeV}$              | $H_{\rm T} > 200~{\rm GeV}$     |
| $\Delta R(j,j) > 0.4$                             | $\Delta R(\ell/j,\gamma) > 0.4$ |

jets: kT jet algorithm photon: Frixione prescription



- significant reduction of scale dependence
- moderate K-factor



Important: A large fraction of events from radiative top decays



⇒ radiation off decay products is an essential contribution to the cross section (maybe implications for  $t\bar{t} + jets$ ,  $t\bar{t} + b\bar{b}$ )

#### Important: A large fraction of events from radiative top decays

 $\implies$  Implications for extraction of total cross section for " $t\bar{t}\gamma$ ".

Measure  $\sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{meas.}}$  and extract  $\sigma_{t\bar{t}\gamma}$  through dividing by branchings  $\sigma_{t\bar{t}\gamma} = \sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{meas.}} \times \mathcal{B}(t \rightarrow b\ell\nu)^{-1} \times \mathcal{B}(\bar{t} \rightarrow \bar{b}jj)^{-1}$  is wrong.

#### Important: A large fraction of events from radiative top decays

 $\implies$  Implications for extraction of total cross section for " $t\bar{t}\gamma$ ".

Measure  $\sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{meas.}}$  and extract  $\sigma_{t\bar{t}\gamma}$  through dividing by branchings  $\sigma_{t\bar{t}\gamma} = \sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{meas.}} \times \mathcal{B}(t \rightarrow b\ell\nu)^{-1} \times \mathcal{B}(\bar{t} \rightarrow \bar{b}jj)^{-1}$  is wrong.

Instead, the radiative top decays have to be treated as "background",

$$\sigma_{t\bar{t}\gamma} = \left(\sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{meas.}} - \sigma_{b\bar{b}\ell\nu jj\gamma}^{\text{decay}}\right) \times \mathcal{B}(t \to b\ell\nu)^{-1} \times \mathcal{B}(\bar{t} \to \bar{b}jj)^{-1}$$

Forward-backward asymmetry in  $t\bar{t}\gamma$ 

$$A_{\rm FB} = \frac{N(y_t > 0) - N(y_t < 0)}{N(y_t > 0) + N(y_t < 0)}$$

- $t\bar{t}$  asymmetry appears only at NLO QCD [Kühn,Rodrigo] Theory prediction  $A_{FB}(t\bar{t}) = 5\%$  in tension with measurement ( $2\sigma$ ) Complete NNLO correction unknown, but indications for robustness
- $t\bar{t} + \gamma$  asymmetry appears already at LO  $A_{\text{FB}}^{\text{LO}}(t\bar{t}\gamma) = -17\%, \quad A_{\text{FB}}^{\text{NLO}}(t\bar{t}\gamma) = -12\%$

The 5% reduction at NLO can be understood. [Melnikov,MS :  $t\bar{t}$  + jet ] Similar effect for  $t\bar{t}$ +jet:  $A_{\text{FB}}^{\text{LO}}(t\bar{t}\text{jet}) = -8\%$ ,  $A_{\text{FB}}^{\text{NLO}}(t\bar{t}\text{jet}) = -2\%$ 





The 5% reduction at NLO can be understood. [Melnikov,MS :  $t\bar{t}$  + jet]

Similar effect for  $t\bar{t}$ +jet:  $A_{\text{FB}}^{\text{LO}}(t\bar{t}\text{jet}) = -8\%$ ,  $A_{\text{FB}}^{\text{NLO}}(t\bar{t}\text{jet}) = -2\%$ 

Markus Schulze, Johns Hopkins University



- large K-factor  $\Rightarrow$  extra phase space for additional jet
- no reduction of scale dependence  $\Rightarrow$  opening up of *q*-*g* channel at NLO (similar features as in  $t\bar{t}$  production)

#### **Exotic top quarks**

$$\sigma_{t\bar{t}\gamma}^{\text{NLO}} = 138 \text{ fb}$$
  $Q_t = \frac{2}{3} \rightarrow -\frac{4}{3}$   $\sigma_{t\bar{t}\gamma}^{\text{NLO}} = 243 \text{ fb}$ 

Large contribution from radiative top decay  $\Rightarrow$  Naive expectation of  $Q_t^2$  scaling fails





1) Ratio of cross sections  $\sigma_{t\bar{t}\gamma}/\sigma_{t\bar{t}}$ 

- Ratios are significantly more stable against NLO corrections
- Small scale uncertainties
- Some experimental uncertainties cancel

2) Choose cuts to enhance  $Q_t^2$  dependence

Inspired by U.Baur et.al.: suppress radiative top decays [Baur,Buice,Orr]

 $m_{\rm T}(b\ell\gamma; E_{\rm T}^{\rm miss}) > 180 {\rm ~GeV}, \qquad m_{\rm T}(\ell\gamma; E_{\rm T}^{\rm miss}) > 90 {\rm ~GeV},$  $160 {\rm ~GeV} < m(bjj) < 180 {\rm ~GeV}, 70 {\rm ~GeV} < m(j,j) < 90 {\rm ~GeV}$ 



2) Choose cuts to enhance  $Q_t^2$  dependence

Inspired by U.Baur et.al.: suppress radiative top decays [Baur,Buice,Orr]

 $m_{\rm T}(b\ell\gamma; E_{\rm T}^{
m miss}) > 180~{
m GeV}, \qquad m_{\rm T}(\ell\gamma; E_{\rm T}^{
m miss}) > 90~{
m GeV},$  $160~{
m GeV} < m(bjj) < 180~{
m GeV}, ~70~{
m GeV} < m(j,j) < 90~{
m GeV}$ 



 $\sigma_{t\bar{t}\gamma}^{\rm NLO} = 26.7^{1.3}_{-2.3} \text{ fb}$ 

improved scaling with  $Q_t$  but significantly smaller cross section (smaller K-factor, strongly reduced scale uncertainty)

## SUMMARY

The process  $t\overline{t} + \gamma$  is an interesting SM signal

- We calculated  $pp \rightarrow t\bar{t} + \gamma \rightarrow b\bar{b} \ \ell \nu \ jj + \gamma$  at NLO QCD
  - realistic and flexible setup
  - include top decays and account for all spin correlations
  - allow photon radiation off decay products
- Tevatron: good agreement with CDF measurement
- LHC: possibility to measure electromagnetic couplings of the top quark
- Large contribution from radiative top decays

### **Extras**

Markus Schulze, Johns Hopkins University

| CDF Run II, $6.0 \text{ fb}^{-1}$                      |                          |                      |                         |
|--------------------------------------------------------|--------------------------|----------------------|-------------------------|
| $tl\gamma$ , Isolated Leptons, Tight Chi2 on Photons   |                          |                      |                         |
| Standard Model Source                                  | $e\gamma b \mathbb{E}_T$ | $\mu \gamma b E_T$   | $(e + \mu)\gamma b E_T$ |
| $t\bar{t}\gamma(semileptonic)$                         | $5.98 \pm 1.10$          | $5.21 \pm 0.97$      | $11.19\pm2.04$          |
| $t\bar{t}\gamma(dileptonic)$                           | $1.47 \pm 0.27$          | $1.27\pm0.24$        | $2.74 \pm 0.50$         |
| $W^{\pm}c\gamma$                                       | $0 \pm 0.07$             | $0 \pm 0.07$         | $0 \pm 0.09$            |
| $W^{\pm}c\bar{c}\gamma$                                | $0 \pm 0.05$             | $0.05\pm0.05$        | $0.05\pm0.07$           |
| $W^{\pm}b\bar{b}\gamma$                                | $0.15\pm0.07$            | $0.06\pm0.05$        | $0.21 \pm 0.08$         |
| WZ                                                     | $0.05\pm0.05$            | $0.05\pm0.05$        | $0.09\pm0.06$           |
| WW                                                     | $0.06 \pm 0.03$          | $0.06 \pm 0.03$      | $0.11 \pm 0.03$         |
| Single Top (s-chan)                                    | $0.09 \pm 0.10$          | $0 \pm 0.10$         | $0.09 \pm 0.13$         |
| Single Top (t-chan)                                    | $0.14 \pm 0.14$          | $0.13 \pm 0.14$      | $0.27\pm0.19$           |
| $\tau \rightarrow \gamma$ fake                         | $0.20\pm0.08$            | $0.10\pm0.05$        | $0.29\pm0.09$           |
| Jet faking $\gamma$ $(ej E_T b, j \rightarrow \gamma)$ | $5.75 \pm 1.76$          | $1.79 \pm 1.56$      | $7.54 \pm 2.53$         |
| Mistags                                                | $1.47\pm0.37$            | $1.02\pm0.32$        | $2.50 \pm 0.51$         |
| QCD(Jets faking $\ell$ and $E_T$ )                     | $0.38\pm0.38$            | $0.02\pm0.020$       | $0.40 \pm 0.38$         |
| $eeE_{T}b, e \rightarrow \gamma$                       | $0.94 \pm 0.19$          | -                    | $0.94 \pm 0.19$         |
| $\mu e E_T b, e \rightarrow \gamma$                    | -                        | $0.49 \pm 0.11$      | $0.49 \pm 0.11$         |
| Total SM Prediction                                    | $16.7 \pm 2.2(tot)$      | $10.3 \pm 1.9 (tot)$ | $26.9 \pm 3.4(tot)$     |
| Observed in Data                                       | 17                       | 13                   | 30                      |



We can now estimate if it is worth applying the RDS cuts. We denote by  $\mathcal{L}$  the luminosity required to separate  $Q_t = -4/3$  from  $Q_t = 2/3$  at the  $3\sigma$  level with the cuts in Eq.(??) and by  $\mathcal{L}_{RDS}$  the same quantity when the RDS cuts are applied in addition. The two quantities are related by the following equation<sup>1</sup>

$$\frac{\mathcal{L}}{\mathcal{L}_{\text{RDS}}} = \frac{\sigma_{\text{RDS}}^{Q_t = 2/3}}{\sigma^{Q_t = 2/3}} \frac{(\mathcal{R}_{\text{RDS}} - 1)^2}{(\mathcal{R} - 1)^2} \tag{1}$$

We can use Eqs.(??,??,??,??,??,??) to compute the ratio of the required luminosities at leading and next-to-leading order in perturbative QCD. Interestingly, because the K-factors for the two types of cuts are so different, we find that the required ratios of luminosities differ by a significant amount

$$\frac{\mathcal{L}}{\mathcal{L}_{\rm RDS}} = \begin{cases} 1.98 \pm 0.02, & \text{LO};\\ 1.12 \pm 0.08, & \text{NLO}. \end{cases}$$
(2)

It follows from Eq.(??) that once next-to-leading order effects are accounted for, the application of RDS suppression cuts becomes much less important since a factor of two gain in luminosity gets reduced to  $\mathcal{O}(10\%)$  gain.



#### Markus Schulze, Johns Hopkins University