Recent Progress in Multi-Loop Calculations

Peter Marquard

Institute for Theoretical Particle Physics Karlsruhe Institute for Technology

in collaboration with

A. Maier, P. Maierhöfer

▲□▶▲□▶▲□▶▲□▶ □ のQで

LoopFest X

Introduction	

Higgs Decays

2 Heavy-Quark Correlators

Introduction

Heavy-Quark Correlators

Higgs Decays

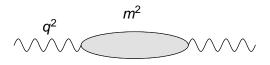
Conclusions

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- much progress in multi-loop calculation
- but: still difficult to calculate processes with more than one mass-scale
 - \hookrightarrow only calculations with exceptional kinematics or expansion in small rations of parameters possible
- there are many single-scale problems where needed master integrals are not known


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

General procedure of multi-loop calculations

- reduce problem to scalar Feynman integrals, e.g. by use of suitable projectors
- expand in small ratios to reduce complexity
- reduce the problem to the calculation of a few basis integrals using integration-by-parts identities
- calculate the basis integrals
 → currently probably the biggest problem in multi-loop calculations

Introduction oo●oooo	Heavy-Quark Correlators	Higgs Decays	Conclusions o
Important cla	sses of integrals		

There are two classes of integrals that are frequently encountered

- massive vacuum diagrams
 - \hookrightarrow result from expansion in q^2/m^2
- massless propagators
 - \hookrightarrow result from expansion in m^2/q^2
- everything that reduces to these classes of integrals is in principle doable at 4-loops.

Introduction 0000000 Heavy-Quark Correlators

Higgs Decays

Conclusions

Ways to expand

expansion by either

direct expansion on the level of diagrams

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction 0000000 Heavy-Quark Correlators

Higgs Decays

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ways to expand

expansion by either

direct expansion on the level of diagrams

or

doing the calculation as far as possible keeping full kinematics

- \hookrightarrow calculate only expansion of master integrals
- \hookrightarrow more complicated but deeper expansion possible

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Calculation of master integrals

Generate system of differential equations, e.g. by use of a master equation

$$\left(q^2\frac{\partial}{\partial q^2}+m^2\frac{\partial}{\partial m^2}-\frac{1}{2}D_m\right)M_i(q^2,m^2)=0$$

solve system of differential equations

- analytically
- numerically
- power series → leads to expansion corresponding to ansatz for power series

Introduction ooooo●o		avy-Quark	elators		Higgs Decay	C c	Conclusions
_							

Expansion of master integrals

 start with system of differential equations obtained from master equation

$$rac{\partial M_i}{\partial z} = \sum_j C_{ij} M_j$$

insert ansatz for the integrals in form of a power series

$$M_i = \sum_j D_{ij} z^j$$

- solve resulting system of linear equation for the D_{ii}
- \hookrightarrow very efficient way to obtain many terms in the expansion

Extension of t	he method		
Introduction oooooo●	Heavy-Quark Correlators	Higgs Decays	Conclusions o

but, extension of method needed, consider e.g.

 \hookrightarrow not expandable in any limit in a simple power series \hookrightarrow extend ansatz to include non-integer powers

$$M_i = \sum_j D_{ij} z^j + D_{ij}^{(\epsilon)} z^{j-\epsilon} + \cdots$$

 \hookrightarrow terms with non-integer powers will generate the expected logarithms

Introd	uction

Higgs Decays

Conclusions

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Heavy-Quark Correlators: Motivation

- heavy-quark correlators related to R(s) via optical theorem
- high-energy expansion → determination of α_s from measurement of *R*(s) off threshold.
- Iow-energy expansion
 → determination of heavy quark masses from experimental data
 @ threshold using diagonal vector correlator.
- low-energy expansion → determination of heavy quark masses from lattice simulations → also non-diagnal and non-vector correlators interesting.

Higgs Decays

Conclusions

Heavy-Quark Correlators: Definition

diagonal vector correlator

$$\Pi_{\mu
u}(q^2)=\int dx\,e^{iqx}\langle 0|\mathcal{T}j_{\mu}(x)j_{
u}(0)|0
angle$$

non-diagonal vector correlator

$$egin{aligned} \Pi_{\mu
u}(q^2) &= \int dx \, e^{iqx} \langle 0|T j_\mu(x) \widetilde{j}_
u(0)|0
angle \ j_\mu &= ar{\psi} \gamma_\mu \psi \qquad \widetilde{j}_\mu &= ar{\psi} \gamma_\mu \chi \end{aligned}$$

 ψ : massive quark, χ : massless quark

 \hookrightarrow axial, scalar and pseudo-scalar correlators similarly defined

Higgs Decays

Conclusions

Heavy-Quark Correlators: Status

- at one and two loops known analytically
- Iow-energy expansion
 - diagonal correlators @ three loops : 30 terms are known

[Chetyrkin et al; Boughezal et al; Maier et al]

- diagonal correlators @ four loops : first three terms are known [Chetyrkin et al; Boughezal et al; Maier et al]
- non-diagonal correlators @ three loops including light mass effects: 4 terms [Chetyrkin et al; Hoff et al]
- high-energy expansion
 - diagonal correlators @ three loops: leading terms [Chetyrkin et al; Harlander et al]
 - diagonal correlators @ four loops: leading terms [Baikov et al]
- vacuum polarization Π reconstructed at three and four loops using e.g. Padé approximations

[Chetyrkin et al; Hoang et al; Kiyo et al; Greynat et al]

[Källén, Sabry '55]

Introduction	

Higgs Decays

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Heavy-Quark Correlators: Calculation

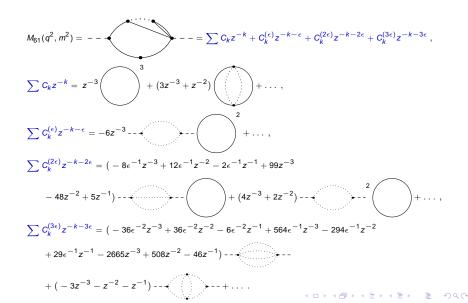
Task: Calculate low- and high-energy expansion of all diagonal and non-diagonal correlators @ three loops

Conclusions

Heavy-Quark Correlators: Calculation

Task: Calculate low- and high-energy expansion of all diagonal and non-diagonal correlators @ three loops Calculation follows standard path:

- Generate diagrams using qgraf
- Calculation performed using FORM
- Reduce integrals to master integrals using integration-by-parts identities and the Laporta algorithm
- Expand master integrals in region of interest using Mathematica program


Checks: all known results reproduced

[Nogueira]

[Vermaseren]

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
	00000000		

Master integrals: Example high-energy expansion

Conclusions

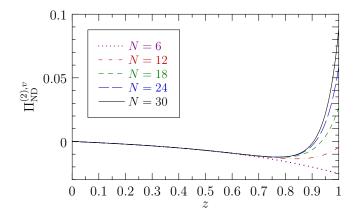
Heavy-Quark Correlators: Results I

non-diagonal vector correlator, \overline{MS} scheme, low-energy

n	$\bar{C}_{n}^{(2),v}[1]$	$\bar{C}_n^{(2),v}[n_h]$	$\overline{C}_n^{(2),v}[n_l]$
1	-1.51195	0.0166564	0.337837
2	-0.840974	-0.0369934	0.187255
3	-0.665554	-0.0289884	0.135615
4	-0.475376	-0.0213752	0.104474
5	-0.309702	-0.0161172	0.0832408
6	-0.177592	-0.0125094	0.067963
7	-0.0753998	-0.00996452	0.0565728
8	0.00291844	-0.00811379	0.0478459
9	0.0628596	-0.00672995	0.0410083
10	0.108797	-0.00566985	0.0355496
11	0.144058	-0.00484063	0.031121
12	0.171144	-0.00418016	0.0274778
13	0.191926	-0.00364579	0.024444

Conclusions

Heavy-Quark Correlators: Results II

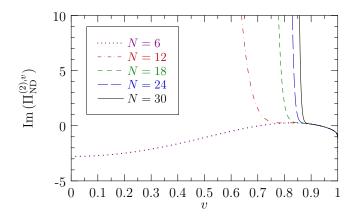

non-diagonal vector correlator, MS scheme, high-energy

n	$\bar{D}_{n,0}^{(2),v}[1]$	$\bar{D}_{n,1}^{(2),v}[1]$	$\bar{D}_{n,2}^{(2),v}[1]$	$\bar{D}_{n,3}^{(2),v}[1]$
1	-17.7072	25.1337	-16.3333	3.16667
2	-60.1359	47.0000	-8.00000	0
3	-41.3176	-15.4431	16.0772	-3.32442
4	4.27239	-20.8764	5.72599	0.659122
5	7.18683	-11.8251	0.822323	-0.129739
6	0.493132	-5.22086	2.92024	-0.566886
7	-16.8712	-10.5240	9.71602	-0.991008
8	-56.8660	-43.6415	29.4833	-1.70280
9	-164.387	-190.388	94.9042	-2.87364
10	-485.549	-831.419	339.294	-4.95108
11	-1537.17	-3780.76	1357.43	-8.63056
12	-5240.01	-18141.8	6001.46	-15.2756
13	-18953.8	-91894.0	28790.4	-27.3450

	0000000000		
Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions

Heavy-Quark Correlators: Convergence I

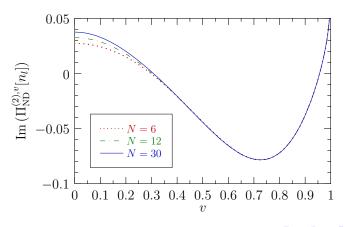
non-diagonal vector correlator @ three loops low-energy region: $z = q^2/m^2$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction		Quark Correlat	tors	Higgs Decays	Conclusions o

Heavy-Quark Correlators: Convergence II


non-diagonal vector correlator @ three loops, imaginary part high-energy region: $v = \sqrt{1 - m^2/q^2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
0000000	000000000●		O
Heavy-Quark	Correlators:	Convergence III	

non-diagonal vector correlator @ three loops, imaginary part, n_l contribution high-energy region: $v = \sqrt{1 - m^2/q^2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction

Heavy-Quark Correlators

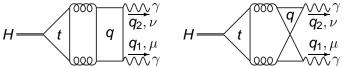
Higgs Decays

Conclusions

Outline

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions	
0000000		●○○○○○○○	o	
Higgs decays				

- *H* → γγ: very clean decay channel, possible detection channel for light Higgs @ LHC
- QCD corrections known analytically @ $\mathcal{O}(\alpha_s)$

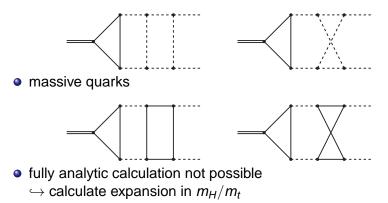

ອອ

[Fleischer et al '04, Harlander et al '05, Aglietti et al '06]

• three terms in the expansion in $m_H^2/(4m_t^2)$ known @ ${\cal O}(lpha_s^2)$

[Steinhauser '96]

but: one class of contributions missing \hookrightarrow singlet diagrams



 possible large corrections due to large logarithms in light quark mass

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
0000000		o●oooooo	o
Higgs decays	: Diagrams		

Contributions from diagrams with

massless quarks

・ロット (雪) (日) (日) (日)

Higgs Decays oo●ooooo

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Higgs decays: Lorentz structure

Structure of the amplitude given by

 $\mathcal{A}^{\mu\nu} = q_1^{\nu} q_2^{\mu} \mathcal{A} + g^{\mu\nu} \mathcal{B} + q_1^{\mu} q_2^{\nu} \frac{\textbf{C}}{\textbf{C}} + q_1^{\mu} q_1^{\nu} \frac{\textbf{D}}{\textbf{D}} + q_2^{\mu} q_2^{\nu} \frac{\textbf{E}}{\textbf{E}}$

- Gauge invariance implies:
 - $B = -q_1q_2A$
 - D = E = 0
 - \hookrightarrow useful checks
- Contribution proportional to q^µ₁q^µ₂ vanishes after contraction with polarization vectors of the photon.

Introduction 0000000 Heavy-Quark Correlators

Higgs Decays

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Higgs decays: Expansions

Calculation possible by either

 $\begin{array}{l} \text{Direct asymptotic expansion} \\ \hookrightarrow \text{expansion depth limited} \end{array}$

Introduction 0000000 Heavy-Quark Correlators

Higgs Decays

Conclusions

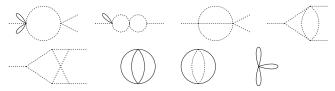
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Higgs decays: Expansions

Calculation possible by either

 $\begin{array}{l} \text{Direct asymptotic expansion} \\ \hookrightarrow \text{expansion depth limited} \end{array}$

or


 $\begin{array}{l} \mbox{Calculation of expansion of master integrals} \\ \hookrightarrow \mbox{more complicated but deeper expansion possible} \end{array}$

Higgs Decays

Conclusions

Higgs decays: Technicalities

- Reduction using integration-by-parts identities leads to 3-loop master integrals of vertex type
 → (46|50|110|142) in the 4 topologies
- Master integrals have to be expanded in $m_h^2/(4m_t^2)$
 - $\hookrightarrow \text{boundary condition}$

• Extend calculation to non-singlet contribution as check and to improve known result.

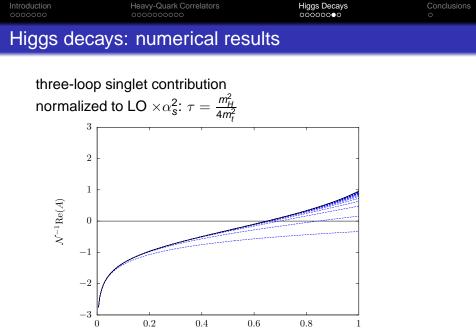
Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
0000000		ooooooooo	o
Higgs decays	: Results		

• Are there any effects from light quark loops?

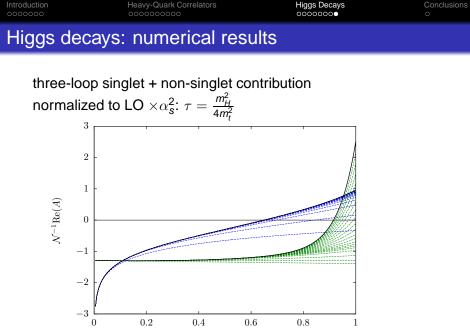
Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions	
000000		ooooo●oo	o	
Higgs decays: Results				

• Are there any effects from light quark loops? No!

$$\begin{aligned} A(H \to \gamma \gamma)|_{\text{light-singlet}} &\propto + \frac{L}{6} + \frac{2}{3} \left(\zeta(3) - \frac{13}{8} \right) \\ &+ t \left(\frac{19 L}{1620} + \frac{2}{3} \left(\frac{7\zeta(3)}{30} - \frac{3493}{32400} \right) \right) \\ &+ t^2 \left(\frac{2}{3} \left(\frac{2\zeta(3)}{21} - \frac{3953}{264600} \right) - \frac{L}{3780} \right) \\ &+ t^3 \left(\frac{2}{3} \left(\frac{26\zeta(3)}{525} - \frac{3668899}{1786050000} \right) - \frac{1696 L}{1063125} \right) \\ &+ t^4 \left(\frac{2}{3} \left(\frac{512\zeta(3)}{17325} + \frac{207481}{736745625} \right) - \frac{136L}{91125} \right) \\ &+ t^5 \left(\frac{2}{3} \left(\frac{1216\zeta(3)}{63063} + \frac{611578464557}{939552540176250} \right) - \frac{7571576 L}{6257426175} \right) + \cdots \end{aligned}$$


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
0000000		oooooo●oo	o
Higgs decays	: Results		


Are there any effects from light quark loops? No!

$$\begin{split} & \mathcal{A}(H \to \gamma \gamma)|_{\text{light-singlet}} \propto + \frac{L}{6} + \frac{2}{3} \left(\zeta(3) - \frac{13}{8} \right) \\ & + t \left(\frac{19 L}{1620} + \frac{2}{3} \left(\frac{7 \zeta(3)}{30} - \frac{3493}{32400} \right) \right) \\ & + t^2 \left(\frac{2}{3} \left(\frac{2 \zeta(3)}{21} - \frac{3953}{264600} \right) - \frac{L}{3780} \right) \\ & + t^3 \left(\frac{2}{3} \left(\frac{26 \zeta(3)}{525} - \frac{3668899}{1786050000} \right) - \frac{1696 L}{1063125} \right) \\ & + t^4 \left(\frac{2}{3} \left(\frac{512 \zeta(3)}{17225} + \frac{207481}{736745625} \right) - \frac{136L}{91125} \right) \\ & + t^5 \left(\frac{2}{3} \left(\frac{1216 \zeta(3)}{63063} + \frac{611578464557}{939552540176250} \right) - \frac{7571576 L}{6257426175} \right) + \cdots \end{split}$$

- But: non-physical part C (vanishes after contraction with polarization vectors) is infrared divergent!
- Calculation reproduces known results for non-singlet contribution

 τ

 τ

◆ロ▶ ◆母▶ ◆ヨ▶ ◆母▶ ● ● ●

Introductio		Heavy-Quark Correlators	Higgs Decays	Conclusions •
-				

Conclusions

Heavy-quark correlators

- Calculated 30 terms in the low- and high-energy expansion of all diagonal and non-diagonal correlators
- Results needed for the determination of quark masses from lattice calculations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 Possible improvement of the reconstruction of the full q² behaviour of the correlators at NNLO

Introduction	Heavy-Quark Correlators	Higgs Decays	Conclusions
			•

Conclusions

Heavy-quark correlators

- Calculated 30 terms in the low- and high-energy expansion of all diagonal and non-diagonal correlators
- Results needed for the determination of quark masses from lattice calculations
- Possible improvement of the reconstruction of the full q² behaviour of the correlators at NNLO
- Higgs decays
 - Calculated 20 terms of the expansion in m_H^2/m_t^2 for the singlet contribution @ NNLO
 - Reproduced and improved the calculation of the non-singlet contribution @ NNLO
 - No logarithmic enhancement in singlet contribution
 - Singlet contribution of the same size as the non-singlet one