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Introduction

In recent years, there has been a great deal of progress in the
calculation of higher-order corrections. At one loop, especially, there
are many new techniques being developed. It is important to
understand whether these new techniques are reliable tools of
quantum field theory that can be applied to multi-loop calculations or
if they are just short-cuts that are only valid at one loop.

One of the workhorses of the effort to compute one-loop helicity
amplitudes in QCD is the Four Dimensional Helicity (FDH)
regularization scheme. In a recent paper I have shown that the FDH is
not a unitary regularization scheme (for non-supersymmetric theories)
and that it generates incorrect results beyond one loop.
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Dimensional Regularization

Dimensional Regularization is the basis for most regularization
schemes in use today.

Respects gauge invariance.

Respects Lorentz invariance.

Handles both UV and IR divergences.

The application of Dimensional Regularization to different kinds of
problems has led to the development of a variety of regularization
schemes which share the dimensional regularization of momentum
integrals but differ in their handling of observed states and spin
degrees of freedom.
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Regularization Schemes

I will be discussing four different regularization schemes which
commonly appear in the literature.

The HV Scheme

The CDR Scheme

The DRED Scheme

The FDH Scheme

The first two are closely related and yield identical results in the
calculation that I will be describing. Superficially at least, the second
two are also closely related in much the same way, but yield very
different results.
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The ’t Hooft-Veltman Scheme

The original formulation of dimensional regularization (the HV
scheme) specifies that external (observed) states are treated as
four-dimensional, while internal states are to be treated as
Dm = 4−2ε dimensional. The Dm-dimensional vector space is larger
than 4-dimensional spacetime:

gµν gα
ν = gµα , gµν

η
α
ν = η

µα , η
µν

η
α
ν = η

µα ,

gµν gµν = Dm , η
µν

ηµν = 4 .

In HV, internal gluons have Dm−2 = 2−2ε spin degrees of freedom.
Internal fermions, however, still have exactly 2 spin degrees of
freedom.
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The Conventional Dimensional Regularization Scheme

In the CDR scheme, all states (observed or internal) are continued to
Dm = 4−2ε dimensions. This is in many ways simpler than the HV
scheme, especially when dealing with infrared sensitive theories like
QCD. In HV, if external states have an infrared overlap, they must be
treated as internal (Dm-dimensional). In CDR, all states are already
Dm-dimensional, so the overlap is automatically treated properly.

The HV and CDR schemes are closely related. Their behaviors under
the renormalization group (β -functions, anomalous dimensions) is
identical and in the calculations I will present they give identical
results.
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The Dimensional Reduction Scheme

In the DRED scheme, one starts from 4-dimensional space-time and
compactifies to a smaller vector space of dimension Dm = 4− 2ε in
which momenta take values.

gµν gα
ν = gµα , gµν

η
α
ν = gµα , η

µν
η

α
ν = η

µα .

Particles in the spectrum retain their 2 spin degrees of freedom from 4
dimensions. This preserves supersymmetry.
BUT: The Ward Identity only applies to the vector subspace in which
momenta are defined!
In non-SUSY theories, the “evanescent” (2ε-dimensional) gluons are
independent from the Dm-dimensional gluons. Their fields and
couplings renormalize independently!
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The Four Dimensional Helicity Scheme

The FDH takes the Dm-dimensional space where momenta take values
to be larger than 4-dimensional space-time, but also defines a still
larger Ds-dimensional vector space where spin degrees of freedom
take values. Ds is taken to be equal to 4 so that particles have the same
number of spin degrees of freedom as they have in 4 dimensions.

gµν gµν = Ds , ĝµν ĝµν = Dm , η
µν

ηµν = 4 ,

gµν ĝρ

ν = ĝµρ , gµν
η

ρ

ν = η
µρ , ĝµν

η
ρ

ν = η
µρ ,

gµν
δ

ρ

ν = δ
µρ , ĝµν

δ
ρ

ν = 0 , η
µν

δ
ρ

ν = 0 .

One might expect that my remarks about the Ward Identity and
evanescent states for DRED would apply to FDH, but that is not the
way the scheme has been used.
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The Four Dimensional Helicity Scheme

Instead, FDH calculations are performed using the following rules.
1 All momentum integrals are Dm dimensional.
2 All “observed” external states are taken to be four-dimensional.
3 All “unobserved” or internal states are treated as Ds dimensional,

and the Ds dimensional vector space is taken to be larger than the
Dm dimensional vector space.

4 Both the Ds and Dm dimensional vector spaces are larger than the
standard four-dimensional space-time.

All degrees of freedom that originate from the gauge symmetry are
treated as parts of the gauge bosons, NOT as independent degrees of
freedom with independent couplings.
The claim is that the crucial difference between FDH and DRED that
allows this treatment of the evanescent components is that Ds > 4.
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The Test Calculation

I will test the reliability of computing high-order corrections in these
schemes by recalculating a physical quantity that is known to very
high order, the inclusive cross section for an electron and positron to
annihilate and produce hadrons.

I will perform these calculations by means of the optical theorem,
taking the imaginary part of the forward scattering amplitudes. This
means taking the imaginary part of the photon vacuum polarization
tensor sandwiched between external states.

Since the optical theorem is a direct consequence of the unitarity of
the S-matrix, any unitary regularization scheme must give the same
result, once one expands in terms of a standard coupling.



Regularization Schemes Test Calculation Renormalization Results

Basic Lagrangian and Sample Diagrams

The basic Lagrangian (4-dimensional) is

L =− 1
2

Aa
µ

(
∂

µ
∂

ν (1−ξ
−1)−gµν�

)
Aa

ν

−gf abc(∂ µ Aaν )Ab
µ Ac

ν −
g2

4
f abc f ade Ab µ Acν Ad

µ Ae
ν

+ i∑
f

ψ
i
f

(
δij /∂ − ig taij /A

a− igV Qf /V
)

ψ
j
f − ca�ca +gf abc (

∂µ ca) Ab µ cc ,

Some sample diagrams at 1, 2, and 3 loops are

I will also compute the N2
f terms at 4 loops.
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σ(e+ e− → hadrons)

σ
e+ e−→ had(Q2) =

4π α2

3Q2 Nc ∑
f

Q2
f

{
1+

(
αMS

s
π

)
CF

3
4

+

(
αMS

s
π

)2 [(
−C2

F
3

32
+CF CA

(
123
32
− 11

4
ζ3

)
+CF Nf

(
−11

16
+

1
2

ζ3

))

+

(
αMS

s
π

)3 [
−C3

F
69
128

+C2
F CA

(
−127

64
− 143

16
ζ3 +

55
4

ζ5

)
+CF C2

A

(
90445
3456

− 2737
144

ζ3−
55
24

ζ5

)
+C2

F Nf

(
− 29

128
+

19
8

ζ3−
5
2

ζ5

)
+CF CA Nf

(
−485

54
+

56
9

ζ3 +
5
12

ζ5

)

+CF N2
f

(
151
216
− 19

36
ζ3

)
− 1

4
π

2 CF β
MS
0

2
] .
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Renormalization

In order to obtain the correct result, it is essential that we properly
renormalize the theory. In CDR, this just means carrying out the
standard MS renormalization.

In DRED, we must follow a more elaborate program. Naı̈ve
application of minimal subtraction to the scattering amplitudes does
not properly renormalize the evanescent terms. Instead we must
renormalize so that the evanescent Green functions are finite before
we sum over the spin degrees of freedom.
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CDR Renormalization

In the CDR scheme, the Lagrangian has the same form as in 4
dimensions and the needed renormalizations are

Γ
(B)
AAA = Z1ΓAAA , ψ

(B) i
f = Z

1
2
2 ψ

i
f , A(B)a

µ = Z
1
2
3 Aa

µ

Γ
(B)
ccA = Z̃1ΓqqA , c(B)a = Z̃

1
2
3 ca , c(B)a = Z̃

1
2
3 ca ,

Γ
(B)
qqA = Z1FΓqqA , ξ

(B) = Z3 ξ ,

To remove sub-divergences in the calculation of the photon vacuum
polarization, the QCD coupling needs to be renormalized, which
requires the self-energy and vertex renormalization constants.

α
B
s =

(
µ2 eγE

4π

)ε

Z
αMS

s
α

MS
s , Z

αMS
s

=
Z2

1

Z3
3

=
Z2

1F

Z2
2 Z3

=
Z̃2

1

Z̃2
3 Z3
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DRED Renormalization

Because the evanescent gauge bosons and their couplings are
independent, the DRED Lagrangian and the resulting renormalization
is far more complicated.

Γ
(B)
AAA = Z1ΓAAA , ψ

(B) i
f = Z

1
2
2 ψ

i
f , A(B)a

µ = Z
1
2
3 Aa

µ

Γ
(B)
ccA = Z̃1ΓqqA , c(B)a = Z̃

1
2
3 ca , c(B)a = Z̃

1
2
3 ca ,

Γ
(B)
qqA = Z1FΓqqA , ξ

(B) = Z3 ξ ,

Γ
(B)
qqe = Z1eΓqqe , A(B)a

e µ = Z
1
2
3e Aa

e µ , Γ
(B) i
eeee = Zi

1eeee Γ
i
eeee ,

Γ
(B)
qqVe

= Z1VeΓqqVe , V(B)
e µ = Z

1
2
3Ve Ve µ .

Note that we also need to compute the wavefunction and vertex
corrections of the evanescent photon!
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DRED Renormalization

As in CDR, subdivergences are removed through coupling constant
renormalizations, but in DRED, there are many couplings to
renormalize.

α
B
s =

(
µ2 eγE

4π

)ε

Z
αDR

s
α

DR
s , Z

αDR
s

=
Z2

1

Z3
3

=
Z2

1F

Z2
2 Z3

=
Z̃2

1

Z̃2
3 Z3

,

α
B
e =

(
µ2 eγE

4π

)ε

Z
αDR

e
α

DR
e , Z

αDR
e

=
Z2

1e

Z2
2 Z3e

,

η
B
i =

(
µ2 eγE

4π

)ε

Z
ηDR

i
η

DR
i , Z

ηDR
i

=

(
Zi

1eeee

)2

Z4
3e

,

α
B
Ve =

(
µ2 eγE

4π

)ε

Z
αDR

Ve
α

DR
Ve , Z

αDR
Ve

=
Z2

1Ve

Z2
2 Z3Ve
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FDH Renormalization

As in the CDR scheme, the Lagrangian in FDH has the same form as
in 4 dimensions and the needed renormalizations are

Γ
(B)
AAA = Z1ΓAAA , ψ

(B) i
f = Z

1
2
2 ψ

i
f , A(B)a

µ = Z
1
2
3 Aa

µ

Γ
(B)
ccA = Z̃1ΓqqA , c(B)a = Z̃

1
2
3 ca , c(B)a = Z̃

1
2
3 ca ,

Γ
(B)
qqA = Z1FΓqqA , ξ

(B) = Z3 ξ ,

Again as in CDR, only the QCD coupling needs to be renormalized.

α
B
s =

(
µ2 eγE

4π

)ε

Z
αFDH

s
α

FDH
s , Z

αFDH
s

=
Z2

1

Z3
3

=
Z2

1F

Z2
2 Z3

=
Z̃2

1

Z̃2
3 Z3
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Computational Methods

Model

generate
diagrams

identify
topology

implement
Feynman

rules

IBP
reduction

evaluate
master

integrals
result
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Master Integrals at 1, 2, 3 and 4 Loops
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Unrenormalized Vacuum Polarization in CDR

The imaginary part of the unrenormalized vacuum polarization tensor
in the CDR scheme is

ℑ

[
Π

(B)
µν (Q)

∣∣∣
CDR

]
=
−Q2 gµν +Qµ Qν

3
α

B
V Nc ∑

f
Q2

f

(
4π

Q2 eγE

)ε {

1+
(

αB
s

π

) (
4π

Q2 eγE

)ε

CF

[
3
4

+ ε

(
55
8
−6ζ3

)
+ ε

2
(

1711
48
− 15

4
ζ2−19ζ3−9ζ4

)
+O(ε3)

]
+
(

αB
s

π

)2( 4π

Q2 eγE

)2ε [ 1
ε

(
11
16

CF CA−
1
8

CF Nf

)
− 3

32
C2

F +CF CA

(
487
48
− 33

4
ζ3

)
+CF Nf

(
−11

6
+

3
2

ζ3

)
+ ε

(
C2

F

(
−143

32
− 111

8
ζ3 +

45
2

ζ5

)
+CF CA

(
50339

576
− 231

32
ζ2−

109
2

ζ3−
99
8

ζ4−
15
4

ζ5

)
+CF Nf

(
−4417

288
+

21
16

ζ2 +
19
2

ζ3 +
9
4

ζ4

))
+O(ε2)

]
+
(

αB
s

π

)3( 4π

Q2 eγE

)3ε

CF N2
f

[
1

48ε2 +
1
ε

(
121
288
− 1

3
ζ3

)
+

2777
576

− 3
8

ζ2−
19
6

ζ3−
1
2

ζ4

]
+ . . .

}
.
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Renormalized Vacuum Polarization in CDR

Upon renormalizing the couplings, I find

ℑ
[

Πµν (Q)
∣∣
CDR

]
=
−Q2 gµν +Qµ Qν

3
αV Nc ∑

f
Q2

f

{
1+

(
αMS

s
π

)
CF

3
4

+

(
αMS

s
π

)2 [
−C2

F
3

32
+CF CA

(
123
32
− 11

4
ζ3

)
+CF Nf

(
−11

16
+

1
2

ζ3

)]

+

(
αMS

s
π

)3

CF N2
f

[
151
216
− 1

24
ζ2−

19
36

ζ3

]
+ . . .

 .

Sandwiching the vacuum polarization between external states, I
obtain the expected result that I showed earlier.
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Dimensional Reduction

In DRED, there are two independent vacuum polarization tensors to
compute, corresponding to the photon and the evanescent photon.

ℑ

[
Π

(B)
µν (Q)

∣∣∣
DRED

]
=
−Q2 ĝµν +QµQν

3
ℑ

[
Π

(B)
A (Q)

∣∣∣
DRED

]
−Q2 δµν

2ε
ℑ

[
Π

(B)
B (Q)

∣∣∣
DRED

]
,

Before renormalization, both components are singular and depend on
the QCD coupling and the various evanescent couplings.
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Unrenormalized ℑ

[
Π

(B)
A (Q)

∣∣∣
DRED

]
ℑ

[
Π

(B)
A (Q)

∣∣∣
DRED

]
= α

B
V Nc ∑

f
Q2

f

(
4π

Q2 eγE

)ε {

1+
(

αB
s

π

)(
4π

Q2 eγE

)ε

CF

[
3
4

+ ε

(
51
8
−6ζ3

)
+ ε

2
(

497
16
− 15

4
ζ2−15ζ3−9ζ4

)
+O(ε3)

]
+
(

αB
e

π

)(
4π

Q2 eγE

)ε

CF

[
−ε

3
4
− ε

2 29
8

+O(ε3)
]

+
(

αB
s

π

)2 ( 4π

Q2 eγE

)2ε [ 1
ε

(
11
16

CF CA−
1
8

CF Nf

)
− 3

32
C2

F +
(

77
8
− 33

4
ζ3

)
CF CA−

(
7
4
− 3

2
ζ3

)
CF Nf

+ ε

(
C2

F

(
−141

32
− 111

8
ζ3 +

45
2

ζ5

)
+CF CA

(
15301

192
− 231

32
ζ2−

193
4

ζ3−
99
8

ζ4−
15
4

ζ5

)
+CF Nf

(
−1355

96
+

21
16

ζ2 +
17
2

ζ3 +
9
4

ζ4

))
+O(ε2)

]
+
(

αB
e

π

)2 ( 4π

Q2 eγE

)2ε [3
4

C2
F−

3
8

CF CA +
3

16
CF Nf − ε

(
47
8

C2
F−

11
4

CF CA +
7
4

CF Nf

)
+O(ε2)

]
+
(

αB
s

π

)(
αB

e
π

) (
4π

Q2 eγE

)2ε [
−9

8
C2

F− ε

(
141
16

C2
F +

21
16

CF CA

)
+O(ε2)

]
+O

((
αB

s
π

,
αB

e
π

)3
)}

,
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Unrenormalized ℑ

[
Π

(B)
B (Q)

∣∣∣
DRED

]
ℑ

[
Π

(B)
B (Q)

∣∣∣
DRED

]
= α

B
Ve Nc ∑

f
Q2

f

(
4π

Q2 eγE

)ε {
ε +2ε

2 +
(

4− 3
2

ζ2

)
ε

3 +O(ε4)

+

(
αB

s
π

)(
4π

Q2 eγE

)ε

CF

[
3
2

+ ε
29
4

+ ε
2
(

227
8
− 15

2
ζ2−6ζ3

)
+O(ε3)

]

+

(
αB

e
π

)(
4π

Q2 eγE

)ε

CF

[
−1−4ε− ε

2
(

27
2
−5ζ2

)
+O(ε3)

]

+

(
αB

s
π

)2 (
4π

Q2 eγE

)2ε [ 1
ε

(
9
8

C2
F +

11
16

CF CA−
1
8

CF Nf

)
+

279
32

C2
F +

199
32

CF CA−
17
16

CF Nf

+ ε

(
C2

F

(
3139
64
− 189

16
ζ2−

45
4

ζ3

)
+CF CA

(
2473
64
− 231

32
ζ2−

75
8

ζ3

)
+CF Nf

(
− 207

32
+

21
16

ζ2 +
3
2

ζ3

))
+O(ε2)

]

+

(
αB

s
π

)(
αB

e
π

)(
4π

Q2 eγE

)2ε [
− 1

ε

9
4

C2
F −

129
8

C2
F −

3
8

CF CA

−ε

((
671
8
− 189

8
ζ2−9ζ3

)
C2

F +
53
16

CF CA

)
+O(ε2)

]

+

(
αB

e
π

)2 (
4π

Q2 eγE

)2ε [ 1
ε

(
C2

F −
1
4

CF CA +
1
8

CF Nf

)
+

13
2

C2
F −

3
2

CF CA +
15
16

CF Nf

+ε

((
31− 21

2
ζ2−

3
4

ζ3

)
C2

F −
(

53
8
− 21

8
ζ2−

3
8

ζ3

)
CF CA +

(
157
32
− 21

16
ζ2

)
CF Nf

)
+O(ε2)

]

+O

( αB
s

π
,

αB
e

π

)3
 ,
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More Unrenormalized terms

I could not even fit the four-loop terms onto the previous two slides.

ℑ

[
Π

(B)
A (Q)

∣∣∣
DRED

]
α3

s N2
f

= α
B
V Nc ∑

f
Q2

f

(
4π

Q2 eγE

)4ε

CF N2
f

{
(

αB
s

π

)3 [ 1
48ε2 +

1
ε

(
13
32
− 1

3
ζ3

)
+

7847
1728

− 3
8

ζ2−
53
18

ζ3−
1
2

ζ4

]
+
(

αB
e

π

)3 [
− 1

ε

3
64
− 83

128

]}

ℑ

[
Π

(B)
B (Q)

∣∣∣
DRED

]
α3

s N2
f

= α
B
Ve Nc ∑

f
Q2

f

(
4π

Q2 eγE

)4ε

CF N2
f

{
(

αB
s

π

)3 [ 1
72ε2 +

1
ε

73
432

+
3595
2592

− 1
4

ζ2−
1
3

ζ3

]
+
(

αB
e

π

)3 [
− 1

48ε2 −
1
ε

11
48
− 155

96
+

3
8

ζ2

]}
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Renormalized Vacuum Polarization in DRED

Renormalizing the many couplings, including that of the evanescent
photon, and shifting αDR

s to αMS
s , I obtain

ℑ [ΠA(Q)|DRED] = αV Nc ∑
f

Q2
f

{
1+

(
αMS

s
π

)
CF

3
4

+

(
αMS

s
π

)2 [
−C2

F
3

32
+CF CA

(
123
32
− 11

4
ζ3

)
+CF Nf

(
−11

16
+

1
2

ζ3

)]

+

(
αMS

s
π

)3

CF N2
f

[
151
216
− 1

24
ζ2−

19
36

ζ3

] ,

ℑ [ΠB(Q)|DRED] = O(ε) .

The evanescent vacuum polarization does not contribute to the cross
section, while the gluon vacuum polarization produces exactly the
expected result.
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Four Dimensional Helicity

In FDH, the calculation is in trouble from the very beginning. The
calculation is term-by-term identical to the DRED calculation except
that evanescent terms are identified with gauge terms. So, as in
DRED, the vacuum polarization tensor splits into two independent
components; a Dm-dimensional component and a Dx-dimensional
(Dx = Ds−Dm) component. For the photon vacuum polarization, the
demand that external states be 4-dimensional means that we only need
the Dm-dimensional component.

The gluon vacuum polarization, however, is a problem, since we need
to extract the renormalization constant to determine the β -function.
At one loop, averaging over degrees of freedom means that only the
Dm-dimensional piece contributes, and we get the usual QCD
β -function. At two loops, the Dx-dimensional piece is still singular
after spin averaging. Only by dropping the Dx term do I get the usual
two-loop contribution to the QCD β -function.
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Unrenormalized ℑ

[
Π

(B)
A (Q)

∣∣∣
FDH

]

ℑ

[
Π

(B)
A (Q)

∣∣∣
FDH

]
= α

B
V Nc ∑

f
Q2

f

(
4π

Q2 eγE

)ε {

1+
(

αB
s

π

)(
4π

Q2 eγE

)ε

CF

[
3
4

+ ε

(
45
8
−6ζ3

)
+ ε

2
(

439
16
− 15

4
ζ2−15ζ3−9ζ4

)
+O(ε3)

]
+
(

αB
s

π

)2 ( 4π

Q2 eγE

)2ε [ 1
ε

(
11
16

CF CA−
1
8

CF Nf

)
− 15

32
C2

F +
(

37
4
− 33

4
ζ3

)
CF CA

−
(

25
16
− 3

2
ζ3

)
CF Nf + ε

(
C2

F

(
−235

32
− 111

8
ζ3 +

45
2

ζ5

)
+CF CA

(
14521

192
− 231

32
ζ2−

193
4

ζ3−
99
8

ζ4−
15
4

ζ5

)
+CF Nf

(
−1187

96
+

21
16

ζ2 +
17
2

ζ3 +
9
4

ζ4

))
+O(ε2)

]
+
(

αB
s

π

)3 ( 4π

Q2 eγE

)3ε

CF N2
f

[
1

48ε2 +
1
ε

(
23
64
− 1

3
ζ3

)
+

13453
3456

− 3
8

ζ2−
53
18

ζ3−
1
2

ζ4

]}
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“Renormalized” Vacuum Polarization in FDH

I only need the leading term in the β -function to renormalize these
terms.

ℑ [ΠA(Q)|FDH ] = αV Nc ∑
f

Q2
f

{
1+

(
αFDH

s
π

)
3
4

CF

+

(
αFDH

s
π

)2 [
−C2

F
15
32

+CF CA

(
131
32
− 11

4
ζ3

)
+CF Nf

(
−5

8
+

1
2

ζ3

)]

+

(
αFDH

s
π

)3

CF N2
f

[
− 1

192ε
+

1843
3456

− 1
24

ζ2−
19
36

ζ3

]
Even after the finite transformation of αFDH

s → αMS
s , the NNLO term

is incorrect and no finite transformation can repair the fact that the
N3LO term is singular.

The renormalization program of the FDH scheme has failed, resulting
in the violation of unitarity.
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Conclusions

I have the behavior of several regularization schemes in high-order
radiative corrections. I find that the CDR and DRED schemes are
correct and equivalent ways of performing QCD calculations through
N3LO. The FDH scheme, however, has been shown to be incorrect
and to violate unitarity beyond NLO when applied to
nonsupersymmetric theories.

The FDH scheme is not a unitary regularization scheme because its
renormalization program fails to remove all of the ultraviolet
singularities. Because it is closely related to the DRED scheme,
however, the FDH scheme could be made into a unitary regularization
scheme if one were to adopt the DRED scheme’s renormalization
program.
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