Jet pair production with POWHEG

Emanuele Re*

IPPP, Durham University

LoopFest X

Northwestern University, 13 May 2011

[JHEP 1104:081,2011]

^{*}in collaboration with S. Alioli, K. Hamilton, P. Nason and C. Oleari

Outline

- Quick description of the method
 - theoretical motivation
 - ingredients and accuracy
- Jet pair production in POWHEG
- Results and comments
- Comparison with data
- Outlook

Theoretical predictions for hadron collider physics

- LHC is running, data are collected, many publications already present, a lot of experimental effort...
- and Tevatron is still running too!
- Main goals: understand EWSB mechanism (Higgs boson) and search for new Physics.
- Many steps to achieve this goal:
 - Understand the detectors.
 - Rediscover what we already know.

[ATLAS tt-pair candidate]

[CMS dijet event]

- Disentangle signal and backgrounds (analysis strategies).
- Compare signals with best available predictions.

traditionally used Th. inputs: parton-level calculations / Monte Carlo event generators.

NLO vs. SMC's (LO + Parton Shower)

NLO

- NLO accuracy for inclusive observables (not only rates).
- ✓ reduced theoretical uncertainty (less sensitive to $\mu_{\rm R}$ and $\mu_{\rm F}$ choices).
- ✓ accurate shapes at high-p_T (for the 1st emission).
- wrong shapes in small-p_T region (or generically where you want to resum logs).
- description only at the parton level.

SMC's

- × total normalization accurate only at LO.
- × poor description of high- $p_{\rm T}$ emissions.
- ✓ Sudakov suppression of small $p_{\rm T}$ emissions (LL resummation, via parton showers).
- ✓ simulate high-multiplicity events at the hadron level, modelling also NP effects.
- largely used by experimental collaborations at various stages.

NLO vs. SMC's (LO + Parton Shower)

NLO

- NLO accuracy for inclusive observables (not only rates).
- ✓ reduced theoretical uncertainty (less sensitive to $\mu_{\rm R}$ and $\mu_{\rm F}$ choices).
- ✓ accurate shapes at high-p_T (for the 1st emission).
- wrong shapes in small-p_T region (or generically where you want to resum logs).
- description only at the parton level.

SMC's

- × total normalization accurate only at LO.
- × poor description of high- $p_{\rm T}$ emissions.
- ✓ Sudakov suppression of small $p_{\rm T}$ emissions (LL resummation, via parton showers).
- ✓ simulate high-multiplicity events at the hadron level, modelling also NP effects.
- largely used by experimental collaborations at various stages.

natural to try to merge the 2 approaches, keeping the good features of both.

real emissions included in both approaches

- NLO: exact n + 1-body matrix element.
- PS's: multiple emissions in the collinear approximation.

main problem: avoid to double-count them !

many proposals, currently two fully tested solutions: MC@NLO [Frixione, Webber 2001] and POWHEG [Nason 2004].

the POWHEG method

We start by looking to the formula for a NLO calculation and for the first branching of a LO Parton Shower.

NLO cross section:

$$d\sigma_{\text{NLO}} = d\Phi_n \Big\{ B(\Phi_n) + V(\Phi_n) + [\underbrace{R(\Phi_{n+1}) - C(\Phi_{n+1})}_{\text{finite}}] d\Phi_r \Big\}$$

where

$$d\Phi_{n+1} = d\Phi_n d\Phi_r$$
, $\Phi_r = \{t, z, \varphi\}$, $V(\Phi_n) = \underbrace{V_{div}(\Phi_n) + \int d\Phi_r C(\Phi_n, \Phi_r)}_{\text{finite}}$

and

$$\frac{R(\Phi_{n+1})}{B(\Phi_n)} \ d\Phi_r \to \left(\frac{\alpha_s}{2\pi} \frac{1}{t} P(z)\right) dt \ dz \ \frac{d\phi}{2\pi} \text{ when } t \to 0 \qquad \qquad \text{coll. factorization}$$

SMC first emission:

$$d\sigma_{\text{SMC}} = B(\Phi_n) \ d\Phi_n \left[\Delta(t_{\max}, t_0) + \Delta(t_{\max}, t) \ \frac{\alpha_s}{2\pi} \ \frac{1}{t} P(z) \ d\Phi_r \right]$$
$$\Delta(t_{\max}, t) = \exp\left\{ -\int_t^{t_{\max}} d\Phi'_r \ \frac{\alpha_s}{2\pi} \frac{1}{t'} P(z') \right\} \qquad \text{SMC Sudakov form factor}$$

the POWHEG method

Idea: Modify $d\sigma_{\rm SMC}$ in such a way that, expanding in $\alpha_{\rm S}$, one recovers the NLO cross section

With the substitutions

$$\begin{split} B(\Phi_n) &\Rightarrow \quad \bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] d\Phi_r \\ \Delta(t_{\max}, t) &\Rightarrow \quad \Delta(\Phi_n; k_{\mathrm{T}}) = \exp\left\{ -\int \frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \theta(k_{\mathrm{T}}' - k_{\mathrm{T}}) \ d\Phi_r' \right\} \quad \text{POWHEG Sudakov} \end{split}$$

we get the POWHEG "master formula" for the hardest emission:

$$d\sigma_{\rm POW} = \bar{B}(\Phi_n) \, d\Phi_n \left\{ \Delta(\Phi_n; k_{\rm T}^{\rm min}) + \Delta(\Phi_n; k_{\rm T}) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

[Nason, JHEP 0411:040,2004]

- to avoid double-counting, subsequent emissions must be p_T vetoed !
- large $k_{\rm T}$ accuracy preserved: since $\Delta(k_{\rm T}) \rightarrow 1$,

$$d\sigma_{\text{POW}} \approx \bar{B}(\Phi_n) \times \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{n+1} \approx R(\Phi_{n+1}) d\Phi_{n+1} \times (1 + \mathcal{O}(\alpha_{\rm S}))$$

small k_T LL accuracy of SMC's preserved:

$$\frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \approx \frac{\alpha_{\rm S}}{2\pi} \frac{1}{t} P(z) \ dt \ dz \ \frac{d\phi}{2\pi}$$

inclusive observables have NLO accuracy

the POWHEG method

Accuracy of the POWHEG Sudakov

logs that exponentiate ($\sim B$) are resummed, since they are contained in R/B:

- LL OK: double soft and collinear logs are included
- single collinear logs (NLL) are also included to go to full NLL:
 - bremsstrahlung scheme: $\alpha_s \rightarrow \alpha_s \left(1 + \frac{\alpha_s}{2\pi}K\right)$
 - include soft non-collinear logs (~ B_{ij}), that in general don't exponentiate.
 - Included in POWHEG if no more than 3 colored particles at the Born level. [√]
 - recover these logs in the large N_C limit shown to be possible but not explicitely implemented until now.

Role of the subsequent shower

- it is vetoed: therefore it is responsible for the accuracy of radiation softer than the 1st one.
- in an angular ordered shower, the hardest emission is not the first: a truncated shower is needed to restore soft wide-angle radiation effects.

 \Rightarrow for simple processes, should have NLL accuracy:

the POWHEG BOX framework

- Although it may look easy, the actual implementation of the algorithm is not straightforward. [Frixione,Nason,Oleari, JHEP 0711:070,2007]
- Our automation of the algorithm led to the **POWHEG** BOX package, which has been available for more than 1 year now.
- General features:
 - automation of the POWHEG algorithm using the FKS subtraction scheme.
 - all previous implementations and new ones included in a single and public framework:

 $V, H(gg \text{ fusion and VBF}), Q\bar{Q}, \text{single-top } (s, t, Wt), ZZ, V + j, jj, WWjj, Wb\bar{b}, Q\bar{Q}j$

- it produces LHE files, ready to be showered through HERWIG or PYTHIA.
- once needed ingredients are provided, it can be used as a "black-box", although all the details were carefully described.

[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]

- Other features:
 - we want to keep as much as possible the original goal of independence from the parton-shower. If needed, will try to refine the interface.
 - until now effects of neglecting truncated-shower (when HERWIG is used) were found to be negligible. If needed, this is a point where there is space for improvements.
 - we will continue keeping our code completely available for interested theorists, and if you implement your process, we would be happy to include it in the repository.

Jet pair production with POWHEG

- Dijet production is by far the most frequent hard scattering in hadronic collisions.
- from the technical point of view, it is up to now the more complicated process implemented in POWHEG.

This means also a serious test for the POWHEG BOX program.

- All ingredients have been known since the late 80's:
 - $2 \rightarrow 2$ and $2 \rightarrow 3$ tree-level amplitudes
 - virtual corrections
 - color-linked amplitudes
 - $2 \rightarrow 2$ amplitudes in the planar limit, to assign color structure before showering.
- Check with independent NLO computation by Frixione-Ridolfi:

[Ellis, Sexton], [Kunszt, Soper]

- Divergent at tree-level !
- In a NLO computation: observable O is IR-safe, and vanish fast enough when 2 singular regions are approached (i.e. we ask for 2 or more jets)
 ⇒ just integrate and fill histograms
- In POWHEG, we start by generating $2 \rightarrow 2$ kinematics:
 - \Rightarrow a *generation* cut is needed

2 options:

- weighted generation:

$$\bar{B}(\Phi_2) \rightarrow \bar{B}(\Phi_2) F(k_T)$$
$$F(k_T) = \left(\frac{k_T^2}{k_T^2 + k_{T,s}^2}\right)^3$$

 $\Rightarrow \text{ small } k_T \text{ suppression} \\ \Rightarrow \text{ event weight: } F(k_T)^{-1}$

Jet pair production with POWHEG

 for inclusive observables, we obtain the expected agreement between NLO and POWHEG: POWHEG = first emission (colored line)

however, in presence of symmetric cuts:

Inclusive dijet processes and the role of cuts

- The most inclusive measurement in jet production is the total cross section. It depends on the cuts used to define jets.
- Despite its simplicity, nontrivial QCD effects take place also when considering the simple observable $\sigma(\Delta)$, where

 $E_{T,2} > E_{T,cut}$ $E_{T,1} > E_{T,cut} + \Delta$

 From simple considerations on phase space, we expect σ'(Δ) = dσ/dΔ < 0, instead NLO prediction has a peak.

 γp predictions (from Frixione-Ridolfi)

ZEUS data (from hep/ex:0109029)

 Of course, experimentally there is nothing "special" in using symmetric cuts, as data above show.

Why this problem?

Inclusive dijet processes with symmetric cuts

- as first noticed by Frixione-Ridolfi, NLO curve alone is "wrong" when symmetric cuts are applied ⇒ unbalanced cancellation of soft-collinear emissions close to the cut.
- argument by Banfi-Dasgupta (for DIS): $\sigma(E_{T,c}, \Delta) = f \otimes C_0(E_{T,c}, \Delta)$ leading-order

$$\begin{aligned} C_0(\Delta) &= \int d\Phi_2 |M_2|^2 \Theta(E_{T,1} - (E_{T,c} + \Delta)) \Theta(E_{T,2} - E_{T,c}) \\ &= \int d^2 \vec{k}_{T,1} \ J \ |M_2|^2 \Theta(k_{T,1} - (E_{T,c} + \Delta)) \\ C_0'(\Delta) &= -\int d^2 \vec{k}_{T,1} \ J \ |M_2|^2 \delta(k_{T,1} - (E_{T,c} + \Delta)) \ \Rightarrow \sigma' < 0 \end{aligned}$$

real + virtual emission, in the soft+coll limit:

$$C_1'(\Delta) \sim -\int d^2 \vec{k}_{T,1} J |M_2|^2 \delta(k_{T,1} - (E_{T,c} + \Delta)) \times \int d\Phi_r S(k_r) [\Theta(\Delta - |k_{r,x}|) - 1]$$

where

- $\begin{array}{l} \bullet \quad |k_{r,x}| = |E_{T,1} E_{T,2}| \\ \bullet \quad |k_{r,x}| < \Delta \text{ needed to have } E_{T,2} > E_{T,c} \end{array}$
- $|k_{r,x}| < \Delta$ here ded to have $E_{T,2} > E_{T,c}$ • assume k_r not recombined with $k_{T,1}$ or $k_{T,2}$
- NLO, in the soft limit: $C'_{NLO}(\Delta) = C'_0(\Delta) W_{NLO}(\Delta)$

$$W_{NLO} = 1 + \int d\Phi_r S(k_r) [\Theta(\Delta - |k_{r,x}|) - 1] = 1 - c \frac{\alpha}{\pi} \log^2 \left(\frac{Q}{\Delta}\right)$$

- Observed the same pattern of FR in dijet hadroproduction with POWHEG
- Resummation performed by the shower works well (here shown POWHEG first emission). Notice that in this case it's a LL resummation.

$$= |y| = \max(|y_1|, |y_2|)$$

• Although in $\sigma(\Delta)$ the effect is huge, symmetric cuts may affect also other distribution...

$$E_T \sim \frac{m_{jj}}{2\cosh|y|}$$

Here we used $E_{T,cut} = 40$ GeV:

$$y \sim 1.8 \Rightarrow m_{jj} \sim 250 \text{ GeV}$$

 $y \sim 1.4 \Rightarrow m_{jj} \sim 170 \text{ GeV}$

comparison with Tevatron data

- black: POWHEG+ PYTHIA, Perugia tune
- direct comparison with D0 data: no K factors, no parton-to-hadron corrections

SM weighted events,
$$k_{T,cut} = 1$$
 GeV,

$$F(p_T) = \left(\frac{p_T^2}{p_T^2 + (600)^2}\right)^3$$
, folded integration.

comparison with ATLAS data

- 5M weighted events, $k_{T,cut} = 1$ GeV, $F(p_T) = \left(\frac{p_T^2}{p_T^2 + (200)^2}\right)^3$, folded integration.
- when comparing with first ATLAS data [Eur.Phys.J.C71:1512(2011)], we found good agreement.
- with more recent data, an ATLAS note showed a sizeable disagreement, especially in m_{ii} with R = 0.6.
- problem is currently under study.

ATLAS studies: m_{jj} and p_T

Program already used in ATLAS-CONF-2011-038,-047,-056,-057 CMS-PAS-FWD-10-003,-006

• dijet invariant mass, R = 0.4

- ${\small \bullet}~~{\rm cuts:}~p_T^{j1}>30~{\rm GeV},~p_T^{j2}>20~{\rm GeV},~|y^j|<4.4$
- observed disagreement, especially when R = 0.6

- $R = 0.4, |y^j| < 2.1, \text{ cuts: } p_T^j > 20 \text{ GeV},$
- MC *b*-jets = jet with a *b*-flavoured hadron within $\Delta R = 0.4$.
- POWHEG as it is, PYTHIA corrected with a K-factor to match total measured cross section.

ATLAS studies: activity between jets

- $\bullet~~{\rm cuts:}~p_T^j>20~{\rm GeV},~|y^j|<4.5$
- gap region = 2 highest-y jets, with $\bar{p}_T > 50 \text{ GeV}$
- gap events = no jets harder than Q_0 within the gap (here $Q_0 = \bar{p}_T$)

 $\bullet~~{\rm cuts:}~p_T^j>20~{\rm GeV}\!,~|y^j|<4.5$

- gap region = 2 highest- p_T jets, with $\bar{p}_T > 50 \text{ GeV}$
- gap events = no jets harder than Q₀ within the gap (here Q₀ = 20 GeV)

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all 2 → 2 SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.

m_{tf} [GeV]

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all 2 → 2 SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.

 W^+W^+jj [Melia,Nason,Rontsch,Zanderighi, arXiv:1102.4846]

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all 2 → 2 SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.
- Understand the origin of the disagreement with ATLAS dijets data is work in progress.
- In general, the validation of the code will be demanding for more complicated processes:
 - \Rightarrow code running properly \neq implementation fully understood
 - \Rightarrow this could be especially relevant for processes with multijets

Outlooks:

- Many interesting processes yet to be implemented (DY with EW corrections, V+multijets, heavy flavours with jets, exact mass effects in Higgs gluon fusion, BSM).
 - \Rightarrow use them to do some phenomenology
 - \Rightarrow allow experimentalists to have accurate tools
- Interfacing to modern codes for virtual corrections.
- Further studies and improvements are possible, for example MENLOPS

[Hamilton, Nason], [SHERPA]

 \Rightarrow include multileg accuracy to a NLO+PS simulation.

- Many $2 \rightarrow 2$ SM processes are available within the POWHEG BOX package.
- Implementing jet-pair was a serious test for our automation of the algorithm.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- 2 → 3 implementations are work in progress, and a 2 → 4 implementation was already possible.
- Understand the origin of the disagreement with ATLAS dijets data is work in progress.
- In general, the validation of the code will be demanding for more complicated processes:

 \Rightarrow code running properly \neq implementation fully understood

 \Rightarrow this could be especially relevant for processes with multijets

Outlooks:

- Many interesting processes yet to be implemented (DY with EW corrections, V+multijets, heavy flavours with jets, exact mass effects in Higgs gluon fusion, BSM).
 - \Rightarrow use them to do some phenomenology
 - \Rightarrow allow experimentalists to have accurate tools
- Interfacing to modern codes for virtual corrections.
- Further studies and improvements are possible, for example MENLOPS

[Hamilton, Nason], [SHERPA]

 \Rightarrow include multileg accuracy to a NLO+PS simulation.

Thanks for your attention!