Computation of two-loop integrals with masses by numerical integration and extrapolation

F. Yuasa, T.Ishikawa, Y.Kurihara, N.Hamaguchi, J.Fujimoto and Y.Shimizu, /KEK
 E. de Doncker/Western Michigan Univ.
 K.Kato/Kogakuin Univ.
 LoopFestX, 12-14 May 2011

Plan of talk

- Introduction
- Fully numerical approach
- Two-loop integral with masses
 - Numerical results (two-loop box integral)
 - Computation time
- Cross-check
- Summary

Introduction

- Automatic Computation System in HEP
 - tree level (just few examples)
 - GRACE, CompHEP, CalcHEP, FeynArts/FeynCalc/FormCalc, Madgraph, HELAC, fdc and so on
 - one-loop level (just few examples)
 - FeynArts/FeynCalc/FormCalc with LoopTools, GRACE-1100p, SloopS, xloop, Golem, DIANA, sanC, and so on
- two-loop and more level
 - Developments of tools or systems for multi-loop are ongoing
 - Analytical approach , AMBRE, MB.m and so on..
 - Numerical approach, this talk(up to two-loop level) and so on..

Scalar loop integral in Feynman parameter representation

$$(-1)^{N} \left(\frac{1}{4\pi}\right)^{nL/2} \Gamma(N - nL/2) \int_{0}^{1} \prod_{i=1}^{N} dx_{i} \delta(1 - x_{1} \cdots - x_{N}) \frac{C^{N - n(L+1)/2}}{(D - i\varepsilon C)^{N - nL/2}}$$

n: space-time dimension, *N*: # of internal particles, *L*: # of loops *D* and *C* are polynomials of $x_1, x_2, ..., x_N$. For *L*=1, *C*=1.

$$n = 4 \begin{bmatrix} L & N & C^{N-2(L+1)}/D^{N-2L} \\ 1 & 3 & 1/(D-i\varepsilon) \\ 4 & 1/(D-i\varepsilon)^2 \\ 5 & 1/(D-i\varepsilon)^3 \\ 2 & 5 & 1/C(D-i\varepsilon C) \\ 6 & 1/(D-i\varepsilon C)^2 \\ 7 & C/(D-i\varepsilon C)^3 \end{bmatrix}$$

$$D \text{ and } C \text{ are determined by the topology of the diagram}$$

 $\mathsf{F}.\mathsf{Yuasa}/\mathsf{KEK}$

Fully numerical approach: Direct Computation Method

E. De Doncker, Y.Shimizu J.Fujimoto, FY Comput. Phys. Comm. 159('04)145.

In the analytic treatment, ε in the denominator is an infinitesimal number (in complex analysis) while we consider it a finite (sometimes rather large) number

$$I = \lim_{\varepsilon \to 0} \int_0^1 dx \int_0^{1-x} dy \frac{1}{D(x,y) - i\varepsilon}$$

Sometimes denominator becomes 0 in the integration region.

 \mathbf{n}

Change
$$\varepsilon$$
 as $\varepsilon_l = \frac{\varepsilon_0}{c^l}$, $c > 1$
Do integration
and get $I(\varepsilon_l)$, $\varepsilon_l > 0$, $l = 0, 1, 2, ...$

$$\Re(I(\varepsilon_l)) = \int_0^1 dx \int_0^{1-x} dy \frac{D(x,y)}{D(x,y)^2 + \varepsilon_l^2},$$

$$\Im(I(\varepsilon_l)) = \int_0^1 dx \int_0^{1-x} dy \frac{\varepsilon_l}{D(x,y)^2 + \varepsilon_l^2}$$

Extrapolate $I(\varepsilon_l)$ and get the result when ε becomes 0.

$$\Re(I) = \lim_{\varepsilon \to 0} \{\Re(I(\varepsilon_l))\},\$$
$$\Im(I) = \lim_{\varepsilon \to 0} \{\Im(I(\varepsilon_l))\}\$$

F.Yuasa/KEK

Numerical Integration

• DQAGE R.Piessens E. De Doncker, C.W.Uberhuber, D.K.Kahaner; "Quadpack – a subroutine package for automatic integration", Springer-Verlag, 1983

$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

an adaptive quadrature routine where sampling points are chosen by Gauss-Kronrod quadrature rule

N

• Double Exponential formulae

H.Takahashi and M.Mori;

"Double Exponential Formulas for Numerical Integration",

Bull.R.I.M.S.,Kyoto Univ.,9,pp.721-741(1974).

$$I = \int_{-1}^{1} f(x) dx = \int_{-\infty}^{\infty} f(g(t))g'(t) dt \approx h \sum_{j=-N} \omega_j f(x_j)$$
$$x = g(t) \qquad g(t) = \tanh\left(\frac{\pi}{2}\sinh(t)\right) \qquad g'(t) = \frac{\frac{\pi}{2}\cosh(t)}{\cosh^2\left(\frac{\pi}{2}\sinh(t)\right)}$$
$$x_j = g(hj) \qquad \omega_j = g'(hj)$$

DQAGE and **DE** (for 1dim) can be used iteratively for multidimensional integral.

 $\mathsf{F}.\mathsf{Yuasa}/\mathsf{KEK}$

Extrapolation

- Extrapolation is used to accelerate convergence of the sequence
 - Wynn's epsilon algorithm
 - Mathematical Tables and Other Aids to Computation, Vol. 10, No. 54 (Apr., 1956), pp.91-96Published (1956) 91-96,
 - SIAM J. Numer. Anal. **3** (1966) 91-122.
- This does not require the specific information of the sequence

Two-loop planar and non-planar box

 $s = (p_1 + p_2)^2 = (p_3 + p_4)^2, \quad t = (p_1 + p_3)^2 = (p_2 + p_4)^2$ $p_1 + p_2 + p_3 + p_4 = 0$

$$J = -\int_0^1 dx_1 \, dx_2 \, dx_3 \, dx_4 \, dx_5 \, dx_6 \, dx_7 \, \delta(1 - \sum_{\ell=1}^7 x_\ell) \frac{\mathcal{C}}{(\mathcal{D} - i\epsilon \mathcal{C})^3}$$

F.Yuasa/KEK

LoopFestX 12-14 May 2011

8

Two-loop planar box

$$J = -\int_0^1 dx_1 \, dx_2 \, dx_3 \, dx_4 \, dx_5 \, dx_6 \, dx_7 \, \delta(1 - \sum_{\ell=1}^7 x_\ell) \frac{\mathcal{C}}{(\mathcal{D} - i\epsilon\mathcal{C})^3}$$

$$\mathcal{D} = \mathcal{C} \sum x_{\ell} m_{\ell}^{2} - \{s(x_{1}x_{2}(x_{4} + x_{5} + x_{6} + x_{7}) + x_{5}x_{6}(x_{1} + x_{2} + x_{3} + x_{4}) + x_{1}x_{4}x_{6} + x_{2}x_{4}x_{5}) + tx_{3}x_{4}x_{7} + p_{1}^{2}(x_{3}(x_{1}x_{4} + x_{1}x_{5} + x_{1}x_{6} + x_{1}x_{7} + x_{4}x_{5})) + p_{2}^{2}(x_{3}(x_{2}x_{4} + x_{2}x_{5} + x_{2}x_{6} + x_{2}x_{7} + x_{4}x_{6})) + p_{3}^{2}(x_{7}(x_{1}x_{4} + x_{1}x_{5} + x_{2}x_{5} + x_{3}x_{5} + x_{4}x_{5})) + p_{4}^{2}(x_{7}(x_{1}x_{6} + x_{2}x_{4} + x_{2}x_{6} + x_{3}x_{6} + x_{4}x_{6}))\}, p_{2} \xrightarrow{x_{2}, m_{2}} \xrightarrow{x_{6}, m_{6}} p_{4}$$

$$\mathcal{C} = (x_1 + x_2 + x_3 + x_4)(x_4 + x_5 + x_6 + x_7) - x_4^2$$

F.Yuasa/KEK

Variable transformation for two-loop planar box

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7) \rightarrow (\rho_1, \rho_2, \rho_3, u_1, u_2, u_3, u_4)$$

$$x_1 = \rho_1 u_1, x_2 = \rho_1 u_2, x_3 = \rho_1 (1 - u_1 - u_2), x_4 = \rho_3, x_5 = \rho_2 u_3, x_6 = \rho_2 u_4, x_7 = \rho_2 (1 - u_3 - u_4)$$

$$\rightarrow (\rho, \xi, u_1, u_2, u_3, u_4)$$

$$\rho_1 = \rho \xi, \rho_2 = \rho(1 - \xi), \rho_3 = 1 - \rho$$

$$\mathcal{D}' = \mathcal{D}/\rho \text{ and } \mathcal{C}' = \mathcal{C}/\rho$$
$$\mathcal{I} = -\int_0^1 d\rho \int_0^1 d\xi \int_0^1 du_1 \int_0^{1-u_1} du_2 \int_0^1 du_3 \int_0^{1-u_3} du_4 \frac{\mathcal{C}'}{(\mathcal{D}' - i\epsilon \mathcal{C}')^3} \rho^3 \xi^2 (1-\xi)^2$$

where \mathcal{D}' is a quadratic in $\mathbf{u} = (u_1, u_2, u_3, u_4)^T$ $\mathcal{D}' = \mathbf{u}^T A \mathbf{u} + \mathbf{b}^T \mathbf{u} + c$ $\mathcal{C}' = \rho \xi (1 - \xi) + 1 - \rho$

F.Yuasa/KEK

$$\begin{bmatrix}
p_1^2 = p_2^2 = p_3^2 = p_4^2 = m^2, \\
m_1 = m_2 = m_5 = m_6 = m, \\
m_3 = m_4 = m_7 = M
\end{bmatrix}$$

 $\mathcal{D}' = \mathbf{u}^T A \mathbf{u} + \mathbf{b}^T \mathbf{u} + c$

$$p_2$$
 x_3, m_3 x_4, m_4 x_7, m_7
 p_2 x_2, m_2 x_6, m_6 p_4

$$A = \begin{pmatrix} (1-\rho)^2 A_1 & \rho \xi (1-\rho)(1-\xi) A_2 \\ \rho \xi (1-\rho)(1-\xi) A_2 & A_3 \end{pmatrix}$$
$$A_1 = \begin{pmatrix} -m^2 & s/2 - m^2 \\ s/2 - m^2 & -m^2 \end{pmatrix}, A_2 = \begin{pmatrix} t/2 - m^2 & 2/s + t/2 - m^2 \\ s/2 + t/2 - m^2 & t/2 - m^2 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} -m^{2}\rho\xi^{2}(1-\rho\xi) & (-s/2+m^{2})\rho(1-\rho)\xi(1-\xi) \\ (-s/2+m^{2})\rho(1-\rho)\xi(1-\xi) & -m^{2}\rho(1-\xi)^{2}(1-\rho+\rho\xi) \end{pmatrix}.$$

$$\vec{b} = \begin{pmatrix} -t\rho\xi(1-\rho)(1-\xi) + M^2(1-\rho)\mathcal{C}' \\ -t\rho\xi(1-\rho)(1-\xi) + M^2(1-\rho)\mathcal{C}' \\ -t\rho\xi(1-\rho)(1-\xi) + M^2\rho\xi\mathcal{C}' \\ -t\rho\xi(1-\rho)(1-\xi) + M^2\rho(1-\xi)\mathcal{C}' \end{pmatrix} \qquad c = t\rho(1-\rho)\xi(1-\xi) - M^2\mathcal{C}'$$

F.Yuasa/KEK

Numerical results of Two-loop planar box with masses in function of $f_s = s/m^2$

Two-loop non-planar box $J = -\int_{0}^{1} dx_{1} dx_{2} dx_{3} dx_{4} dx_{5} dx_{6} dx_{7} \delta(1 - \sum_{\ell=1}^{7} x_{\ell}) \frac{\mathcal{C}}{(\mathcal{D} - i\epsilon\mathcal{C})^{3}}$ $\mathcal{D} = -\mathcal{C}\sum x_{\ell}m_{\ell}^{2}$

+ { $s(x_1x_2x_4 + x_1x_2x_5 + x_1x_2x_6 + x_1x_2x_7 + x_1x_5x_6 + x_2x_4x_7 - x_3x_4x_6)$

+
$$t(x_3(-x_4x_6+x_5x_7))$$

+
$$p_1^2(x_3(x_1x_4 + x_1x_5 + x_1x_6 + x_1x_7 + x_4x_6 + x_4x_7))$$

- + $p_2^2(x_3(x_2x_4 + x_2x_5 + x_2x_6 + x_2x_7 + x_4x_6 + x_5x_6))$
- + $p_3^2(x_1x_4x_5 + x_1x_5x_7 + x_2x_4x_5 + x_2x_4x_6 + x_3x_4x_5 + x_3x_4x_6 + x_4x_5x_6 + x_4x_5x_7)$ + $p_4^2(x_1x_4x_6 + x_1x_6x_7 + x_2x_5x_7 + x_2x_6x_7 + x_3x_4x_6 + x_3x_6x_7 + x_4x_6x_7 + x_5x_6x_7)$ }

$$\mathcal{C} = (x_1 + x_2 + x_3 + x_4 + x_5)(x_1 + x_2 + x_3 + x_6 + x_7) - (x_1 + x_2 + x_3)^2$$

F.Yuasa/KEK

Computation time Example: two-loop non-planar box in physical region

fs	Computation time	key	Limit	
6.0	16 hours	2	10, 20, 10, 10, 10, 10]
7.0	2 days	2	10, 20, 10, 10, 10, 10	C
10.0	1 week	2	10, 20, 20, 10, 10, 10	t

For $f_s = -1$, computation time is ~24 sec.

by single CPU: Intel(R) Xeon(R) CPU

X5460 @ 3.16GHz

Integration parameter

Key : Gauss-Kronrod rule, 10 - 21 points if key = 2 Limit: an upperbound on the number of subintervals

Parallel computing is required.

 $\mathsf{F}.\mathsf{Yuasa}/\mathsf{KEK}$

Cross-check

- 1. Comparison with reduction method
- 2. Self consistency check using Dispersion relation
- 3. Comparison with another method

Cross-check: Reduction Method

$$D = \mathbf{x}^{T} A \mathbf{x} + \mathbf{B}^{T} \mathbf{x} + C$$

$$\mathbf{x}^{T} = (x_{1}, x_{2}, \dots, x_{N}), \quad A = (a_{ij}) \quad a_{ij} = a_{ji}$$

$$\mathbf{B}^{T} = (b_{1}, b_{2}, \dots, b_{N}), \quad C \text{ is a constant}$$

Let us assume $\det(A) \neq 0$

$$\Delta_{N} = \mathbf{B}^{T} A^{-1} \mathbf{B} - 4C \text{ and let us assume } \Delta_{N} \neq 0$$

with $\mathbf{X} = 2\mathbf{x} + A^{-1} \mathbf{B} = A^{-1} \nabla D(\mathbf{x})$

$$\frac{\Delta_N}{D^{n+1}} = \underbrace{\frac{-4+2N/n}{D^n}}_{D^n} - \frac{1}{n} \nabla^T \left(\frac{\mathbf{X}}{D^n}\right) \quad , \nabla^T = (\partial_1, \partial_2, \cdots, \partial_N)$$
This term vanishes with $N=2n$.
$$n = 0 \quad \frac{\Delta_N}{D} = (-4-2N\log D) + \nabla^T (\mathbf{X}\log D)$$
EVALUATE TO LOOP Fest X 12-14 May 2011 17

Comparison with numerical results by reduction method

Cross-check: Dispersion Relation

Comparison with Laporta's program SYS

- S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087
- The program SYS
 - High-precision calculation of multi-loop Feynman integrals by difference equations
- Parameters:

$$\blacktriangleright m_1 = \ldots = m_N = 1$$
$$\blacktriangleright s = t = 1 \text{ and } u = 2$$

Cross-check: Comparison with Laporta's program SYS

Fig.	L	Ν		finite term
(d)	2	5	Laporta	0.9236318265199
			DQ-Direct Computation Method	0.923631826519864
			DE-Direct Computation Method	0.9236

DQ-Direct Computation Method: DQAGE routine is used DE-Direct Computation Method: Double Exp. Formulae is used F.Yuasa/KEK LoopFestX 12-14 May 2011 Cross-check: Comparison with Laporta's program SYS

Fig.	L	Ν		finite term
(a)	1	3	Laporta	0.671253105748
$p_1 - p_2$	Y		DQ-Direct Computation Method	0.67125310574800
<i>p</i> ₁ ((a) p_2		DE-Direct Computation Method	0.671253105748005
(d)	2	5	Laporta	0.937139527315
$\frac{1}{2}$			DQ-Direct Computation Method	0.937139
	d)		DE-Direct Computation Method	0.937139527314984
(e)	2	6	Laporta	0.2711563494022
(e)	2	6	Laporta DQ-Direct Computation Method	0.2711563494022 0.27116
$\frac{1}{2^{3}}$	2	6		
$\frac{1}{2^{3}}$	4	6	DQ-Direct Computation Method	0.27116
	e)		DQ-Direct Computation Method DE-Direct Computation Method	0.27116 0.2711559
$\frac{1}{2}$	2		DQ-Direct Computation Method DE-Direct Computation Method Laporta	0.27116 0.2711559 0.173896742268

Cross-check: Comparison with Laporta's program SYS

F.Yuasa/KEK

	L	Ν		finite term
(a)	1	4	Laporta	0.3455029252972
$p_1 - p_2$	$p_2 - p_3$		DQ-Direct Computation Method	0.34550292529718
<i>p</i> ₁	(a) p ₃		DE-Direct Computation Method	0.345502925289537
(C)	2	5	Laporta	0.9509235623171
1	2		DQ-Direct Computation Method	0.95092
Ĺ	(c)		DE-Direct Computation Method	0.95092
(d)	2	6	Laporta	0.276209225359
2	4 5		DQ-Direct Computation Method	Not yet
	$\frac{3}{d}$		DE-Direct Computation Method	0.276
(g)	2	7	Laporta	0.1723367907503
	2		DQ-Direct Computation Method	Not yet
	3 4 g)		DE-Direct Computation Method	0.17232
(h)	2	7	Laporta	0.1036407209893
3	2		DQ-Direct Computation Method	0.1036408479
	h)		DE-Direct Computation Method	0.103643

Summary

- By fully numerical method, Direct Computation Method, we computed two-loop planar and non-planar box integrals with masses.
- The method is based on the combination of numerical integration and numerical extrapolation.
- The quality of numerical results are checked in three ways; (a) a comparison with reduction method, (b) a self consistency check using dispersion relation and (c) a comparison with Laporta's method. We find agreement in all cases.
- To reduce the computation time, parallel computing is required.