Computation of two-loop integrals with masses by numerical integration and extrapolation

F. Yuasa, T.Ishikawa, Y.Kurihara, N.Hamaguchi, J.Fujimoto and Y.Shimizu, /KEK E. de Doncker/Western Michigan Univ.
K.Kato/Kogakuin Univ.
LoopFestX, 12-14 May 2011

Plan of talk

- Introduction
- Fully numerical approach
- Two-loop integral with masses
- Numerical results (two-loop box integral)
- Computation time
- Cross-check
- Summary

Introduction

- Automatic Computation System in HEP
- tree level (just few examples)
- GRACE, CompHEP, CalcHEP, FeynArts/FeynCalc/FormCalc, Madgraph, HELAC, fdc and so on
- one-loop level (just few examples)
- FeynArts/FeynCalc/FormCalc with LoopTools, GRACE-1loop, SloopS, xloop, Golem, DIANA, sanC, and so on
- two-loop and more level
- Developments of tools or systems for multi-loop are ongoing
- Analytical approach , AMBRE, MB.m and so on..
- Numerical approach, this talk(up to two-loop level) and so on..

Scalar loop integral in Feynman parameter representation

$$
(-1)^{N}\left(\frac{1}{4 \pi}\right)^{n L / 2} \Gamma(N-n L / 2) \int_{0}^{1} \prod_{i=1}^{N} d x_{i} \delta\left(1-x_{1} \cdots-x_{N}\right) \frac{C^{N-n(L+1) / 2}}{(D-i \varepsilon C)^{N-n L / 2}}
$$

n : space-time dimension, N : \# of internal particles, L : \# of loops
D and C are polynomials of $x_{1}, x_{2}, \ldots, x_{N}$. For $L=1, C=1$.

$$
\begin{array}{c|c|c|c}
n=4 & & N & C^{N-2(L+1)} / \boldsymbol{D}^{N-2 L} \\
& 1 & 3 & 1 /(D-\boldsymbol{i} \varepsilon) \\
& & 4 & 1 /(D-i \varepsilon)^{2} \\
& & 5 & 1 /(D-i \varepsilon)^{3} \\
& 2 & 5 & 1 / C(D-i \varepsilon C) \\
& & 6 & 1 /(D-i \varepsilon C)^{2} \\
& & 7 & C /(D-i \varepsilon C)^{3}
\end{array}
$$

D and C are determined by the topology of the diagram

Fully numerical approach: Direct Computation Method

E. De Doncker, Y.Shimizu J.Fujimoto, FY Comput. Phys. Comm. 159('04)145.

In the analytic treatment, ε in the denominator is an infinitesimal number (in complex analysis) while we consider it a finite (sometimes rather large) number

$$
I=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{D(x, y)-i \varepsilon}
$$

Sometimes denominator becomes 0 in the integration region.

Change ε as $\quad \varepsilon_{l}=\frac{\varepsilon_{0}}{c^{l}}, \quad c>1 \quad \Re\left(I\left(\varepsilon_{l}\right)\right)=\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{D(x, y)}{D(x, y)^{2}+\varepsilon_{l}{ }^{2}}$,
Do integration and get $I\left(\varepsilon_{l}\right), \varepsilon_{l}>0, l=0,1,2, \ldots$

$$
\Im\left(I\left(\varepsilon_{l}\right)\right)=\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{\varepsilon_{l}}{D(x, y)^{2}+\varepsilon_{l}^{2}}
$$

Extrapolate $I\left(\varepsilon_{l}\right)$
and get the result when ε becomes 0 .

$$
\begin{aligned}
& \mathfrak{R}(I)=\lim _{\varepsilon \rightarrow 0}\left\{\mathfrak{\Re}\left(I\left(\varepsilon_{l}\right)\right)\right\}, \\
& \mathfrak{J}(I)=\lim _{\varepsilon \rightarrow 0}\left\{\mathfrak{F}\left(I\left(\varepsilon_{l}\right)\right)\right\}
\end{aligned}
$$

Numerical Integration

- DOA』』 R.Piessens E. De Doncker, C.W.Uberhuber, D.K.Kahaner;
"Quadpack - a subroutine package for automatic integration", Springer-Verlag, 1983

$$
I=\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)
$$

an adaptive quadrature routine where sampling points are chosen by Gauss-
Kronrod quadrature rule
H.Takahashi and M.Mori;

- Double Exponential formulae
"Double Exponential Formulas for Numerical Integration",

$$
\begin{aligned}
I= & \int_{-1}^{1} f(x) d x=\int_{-\infty}^{\infty} f(g(t)) g^{\prime}(t) d t \approx h \sum_{j=-N}^{N} \omega_{j} f\left(x_{j}\right) \\
& x=g(t) \quad g(t)=\tanh \left(\frac{\pi}{2} \sinh (t)\right) \quad g^{\prime}(t)=\frac{\frac{\pi}{2} \cosh (t)}{\cosh ^{2}\left(\frac{\pi}{2} \sinh (t)\right)} \\
& x_{j}=g(h j) \quad \omega_{j}=g^{\prime}(h j)
\end{aligned}
$$

DQAGE and DE (for 1dim) can be used iteratively for multidimensional integral.

Extrapolation

- Extrapolation is used to accelerate convergence of the sequence
- Wynn's epsilon algorithm
- Mathematical Tables and Other Aids to Computation, Vol. 10, No. 54 (Apr., 1956), pp.91-96Published (1956) 91-96,
- SIAM J. Numer. Anal. 3 (1966) 91-122.
- This does not require the specific information of the sequence

Two-loop planar and non-planar box

$$
\begin{aligned}
& p_{1} \longrightarrow x^{4}, m_{1} \\
& s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}, \quad t=\left(p_{1}+p_{3}\right)^{2}=\left(p_{2}+p_{4}\right)^{2} \\
& p_{1}+p_{2}+p_{3}+p_{4}=0 \\
& J=-\int_{0}^{1} d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6} d x_{7} \delta\left(1-\sum_{\ell=1}^{7} x_{\ell}\right) \frac{\mathcal{C}}{(\mathcal{D}-i \epsilon \mathcal{C})^{3}}
\end{aligned}
$$

Two-loop planar box

$$
\begin{aligned}
& J=-\int_{0}^{1} d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6} d x_{7} \delta\left(1-\sum_{\ell=1}^{7} x_{\ell}\right) \frac{\mathcal{C}}{(\mathcal{D}-i \epsilon \mathcal{C})^{3}} \\
& \mathcal{D}=\mathcal{C} \sum x_{\ell} m_{\ell}^{2} \\
& -\left\{s\left(x_{1} x_{2}\left(x_{4}+x_{5}+x_{6}+x_{7}\right)+x_{5} x_{6}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+x_{1} x_{4} x_{6}+x_{2} x_{4} x_{5}\right)\right. \\
& +\quad t x_{3} x_{4} x_{7} \\
& +p_{1}^{2}\left(x_{3}\left(x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{7}+x_{4} x_{5}\right)\right) \\
& +p_{2}^{2}\left(x_{3}\left(x_{2} x_{4}+x_{2} x_{5}+x_{2} x_{6}+x_{2} x_{7}+x_{4} x_{6}\right)\right) \\
& +p_{3}^{2}\left(x_{7}\left(x_{1} x_{4}+x_{1} x_{5}+x_{2} x_{5}+x_{3} x_{5}+x_{4} x_{5}\right)\right) \\
& \left.+p_{4}^{2}\left(x_{7}\left(x_{1} x_{6}+x_{2} x_{4}+x_{2} x_{6}+x_{3} x_{6}+x_{4} x_{6}\right)\right)\right\}, \\
& \mathcal{C}=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{4}+x_{5}+x_{6}+x_{7}\right)-x_{4}^{2}
\end{aligned}
$$

Variable transformation for two-loop planar box

$$
\begin{gathered}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(\rho_{1}, \rho_{2}, \rho_{3}, u_{1}, u_{2}, u_{3}, u_{4}\right) \\
\begin{aligned}
& x_{1}=\rho_{1} u_{1}, x_{2}=\rho_{1} u_{2}, x_{3}=\rho_{1}\left(1-u_{1}-u_{2}\right), x_{4}=\rho_{3}, x_{5}=\rho_{2} u_{3}, x_{6}=\rho_{2} u_{4}, x_{7}=\rho_{2}\left(1-u_{3}-u_{4}\right) \\
& \rightarrow\left(\rho, \xi, u_{1}, u_{2}, u_{3}, u_{4}\right) \\
& \rho_{1}=\rho \xi, \rho_{2}=\rho(1-\xi), \rho_{3}=1-\rho
\end{aligned} \\
\mathcal{D}^{\prime}=\mathcal{D} / \rho \text { and } \mathcal{C}^{\prime}=\mathcal{C} / \rho \\
\mathcal{I}=-\int_{0}^{1} d \rho \int_{0}^{1} d \xi \int_{0}^{1} d u_{1} \int_{0}^{1-u_{1}} d u_{2} \int_{0}^{1} d u_{3} \int_{0}^{1-u 3} d u_{4} \frac{\mathcal{C}^{\prime}}{\left(\mathcal{D}^{\prime}-i \epsilon \mathcal{C}^{\prime}\right)^{3}} \rho^{3} \xi^{2}(1-\xi)^{2} \\
\text { where } \mathcal{D}^{\prime} \text { is a quadratic in } \mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)^{T} \\
\mathcal{D}^{\prime}=\mathbf{u}^{T} A \mathbf{u}+\mathbf{b}^{T} \mathbf{u}+c \quad \mathcal{C}^{\prime}=\rho \xi(1-\xi)+1-\rho \\
\text { F.Yuasa/KEK LoopFestX 12-14 May } 2011
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=m^{2}, \\
m_{1}=m_{2}=m_{5}=m_{6}=m, \\
m_{3}=m_{4}=m_{7}=M
\end{array}\right. \\
& \mathcal{D}^{\prime}=\mathbf{u}^{T} A \mathbf{u}+\mathbf{b}^{T} \mathbf{u}+c \\
& A=\left(\begin{array}{cc}
(1-\rho)^{2} A_{1} & \rho \xi(1-\rho)(1-\xi) A_{2} \\
\rho \xi(1-\rho)(1-\xi) A_{2} & A_{3}
\end{array}\right) \\
& A_{1}=\left(\begin{array}{cc}
-m^{2} & s / 2-m^{2} \\
s / 2-m^{2} & -m^{2}
\end{array}\right), A_{2}=\left(\begin{array}{cc}
t / 2-m^{2} & 2 / s+t / 2-m^{2} \\
s / 2+t / 2-m^{2} & t / 2-m^{2}
\end{array}\right) \text {, } \\
& A_{3}=\left(\begin{array}{cc}
-m^{2} \rho \xi^{2}(1-\rho \xi) & \left(-s / 2+m^{2}\right) \rho(1-\rho) \xi(1-\xi) \\
\left(-s / 2+m^{2}\right) \rho(1-\rho) \xi(1-\xi) & -m^{2} \rho(1-\xi)^{2}(1-\rho+\rho \xi)
\end{array}\right) . \\
& \vec{b}=\left(\begin{array}{c}
-t \rho \xi(1-\rho)(1-\xi)+M^{2}(1-\rho) \mathcal{C}^{\prime} \\
-t \rho \xi(1-\rho)(1-\xi)+M^{2}(1-\rho) \mathcal{C}^{\prime} \\
-t \rho \xi(1-\rho)(1-\xi)+M^{2} \rho \xi \mathcal{C}^{\prime} \\
-t \rho \xi(1-\rho)(1-\xi)+M^{2} \rho(1-\xi) \mathcal{C}^{\prime}
\end{array}\right) \quad c=t \rho(1-\rho) \xi(1-\xi)-M^{2} \mathcal{C}^{\prime}
\end{aligned}
$$

Numerical results of Two-loop planar box with masses in function of $f_{s}=s / \mathrm{m}^{2}$

Two-loop non-planar box

$$
\begin{aligned}
J= & -\int_{0}^{1} d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6} d x_{7} \delta\left(1-\sum_{\ell=1}^{7} x_{\ell}\right) \frac{\mathcal{C}}{(\mathcal{D}-i \epsilon \mathcal{C})^{3}} \\
\mathcal{D} & =-\mathcal{C} \sum x_{\ell} m_{\ell}^{2} \\
& +\left\{s\left(x_{1} x_{2} x_{4}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{6}+x_{1} x_{2} x_{7}+x_{1} x_{5} x_{6}+x_{2} x_{4} x_{7}-x_{3} x_{4} x_{6}\right)\right. \\
& +t\left(x_{3}\left(-x_{4} x_{6}+x_{5} x_{7}\right)\right) \\
& +p_{1}^{2}\left(x_{3}\left(x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{7}+x_{4} x_{6}+x_{4} x_{7}\right)\right) \\
& +p_{2}^{2}\left(x_{3}\left(x_{2} x_{4}+x_{2} x_{5}+x_{2} x_{6}+x_{2} x_{7}+x_{4} x_{6}+x_{5} x_{6}\right)\right) \\
& +p_{3}^{2}\left(x_{1} x_{4} x_{5}+x_{1} x_{5} x_{7}+x_{2} x_{4} x_{5}+x_{2} x_{4} x_{6}+x_{3} x_{4} x_{5}+x_{3} x_{4} x_{6}+x_{4} x_{5} x_{6}+x_{4} x_{5} x_{7}\right) \\
& \left.+p_{4}^{2}\left(x_{1} x_{4} x_{6}+x_{1} x_{6} x_{7}+x_{2} x_{5} x_{7}+x_{2} x_{6} x_{7}+x_{3} x_{4} x_{6}+x_{3} x_{6} x_{7}+x_{4} x_{6} x_{7}+x_{5} x_{6} x_{7}\right)\right\} \\
\mathcal{C} & =\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)\left(x_{1}+x_{2}+x_{3}+x_{6}+x_{7}\right)-\left(x_{1}+x_{2}+x_{3}\right)^{2}
\end{aligned}
$$

Computation time
Example: two-loop non-planar box in physical region

fs	Computation time	key	Limit
6.0	16 hours	2	$10,20,10,10,10,10$
7.0	2 days	2	$10,20,10,10,10,10$
10.0	1 week	2	$10,20,20,10,10,10$

For $f_{s}=-1$, computation time is $\sim 24 \mathrm{sec}$.
by single CPU: Intel(R) Xeon(R) CPU X5460 @ 3.16GHz
Integration parameter
Key : Gauss-Kronrod rule, 10-21 points if key $=2$
Limit: an upperbound on the number of subintervals

Parallel computing is required.

Cross-check

1. Comparison with reduction method
2. Self consistency check using Dispersion relation
3. Comparison with another method

Cross-check: Reduction Method

$$
\begin{gathered}
D=\mathbf{x}^{T} A \mathbf{x}+\mathbf{B}^{T} \mathbf{x}+C \\
\mathbf{x}^{T}=\left(x_{1}, x_{2}, \cdots, x_{N}\right), \quad A=\left(a_{i j}\right) a_{i j}=a_{j i} \\
\mathbf{B}^{T}=\left(b_{1}, b_{2}, \cdots, b_{N}\right), \quad C \text { is a constant }
\end{gathered}
$$

Let us assume $\operatorname{det}(A) \neq 0$
$\Delta_{N}=\mathbf{B}^{T} A^{-1} \mathbf{B}-4 C$ and let us assume $\Delta_{N} \neq 0$
with $\mathbf{X}=2 \mathbf{x}+A^{-1} \mathbf{B}=A^{-1} \nabla D(\mathbf{x})$

$$
\begin{aligned}
& \frac{\Delta_{N}}{D^{n+1}}= \frac{-4+2 N / n}{D^{n}}-\frac{1}{n} \nabla^{T}\left(\frac{\mathbf{X}}{D^{n}}\right) \quad, \nabla^{T}=\left(\partial_{1}, \partial_{2}, \cdots, \partial_{N}\right) \\
& \text { This term vanishes with } N=2 n \\
& n=0 \quad \frac{\Delta_{N}}{D}=(-4-2 N \log D)+\nabla^{T}(\mathbf{X} \log D) \\
& \text { F.Yuasa/KEK }
\end{aligned}
$$

Comparison with numerical results by reduction method

Comparison with numerical results by reduction method

Cross-check: Dispersion Relation

Self consistency check by dispersion relation

$$
\text { Parameters: } \mathrm{m}=50 \mathrm{GeV}, \mathrm{M}=90 \mathrm{GeV}, \mathrm{t}=-100^{2} \mathrm{GeV}^{2}, \quad f_{s}=s / m^{2}
$$

Comparison with Laporta's program SYS

- S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087
- The program SYS
- High-precision calculation of multi-loop Feynman integrals by difference equations
- Parameters:

$$
\begin{aligned}
& >m_{1}=\ldots=m_{N}=1 \\
& >s=t=1 \text { and } u=2
\end{aligned}
$$

selfenergy $\mathrm{L}=1,2 \mathrm{~N}=2,3,4,5$

DQ-Direct Computation Method: DQAGE routine is used
DE-Direct Computation Method: Double Exp. Formulae is used

vertex $\mathrm{L}=1,2 \mathrm{~N}=3,4,5,6$

Fig.	L	N		finite term
(a)	1	3	Laporta	0.671253105748
			DQ-Direct Computation Method	0.67125310574800
			DE-Direct Computation Method	0.671253105748005
(d)	2	5	Laporta	0.937139527315
			DQ-Direct Computation Method	0.937139
			DE-Direct Computation Method	0.937139527314984
(e)	2	6	Laporta	0.2711563494022
			DQ-Direct Computation Method	0.27116
			DE-Direct Computation Method	0.2711559
(f) 2		6	Laporta	0.173896742268
			DQ-Direct Computation Method	0.173432
			DE-Direct Computation Method	0.17390
F.Yuasa/KEK			LoopFestX 12-14 May	25

box $\mathrm{L}=1,2$ and $\mathrm{N}=4,5,6,7$

	L	N		finite term
(a)	1	4	Laporta	0.3455029252972
			DQ-Direct Computation Method	0.34550292529718
			DE-Direct Computation Method	0.345502925289537
(c)	2	5	Laporta	0.9509235623171
			DQ-Direct Computation Method	0.95092
			DE-Direct Computation Method	0.95092
(d)	2	6	Laporta	0.276209225359
			DQ-Direct Computation Method	Not yet
			DE-Direct Computation Method	0.276
(g)		7	Laporta	0.1723367907503
			DQ-Direct Computation Method	Not yet
			DE-Direct Computation Method	0.17232
		7	Laporta	0.1036407209893
			DQ-Direct Computation Method	0.1036408479
			DE-Direct Computation Method	0.103643
F.Yuasa/KEK			LoopFestX 12-14 May 2011	27

Summary

- By fully numerical method, Direct Computation Method, we computed two-loop planar and non-planar box integrals with masses.
- The method is based on the combination of numerical integration and numerical extrapolation.
- The quality of numerical results are checked in three ways; (a) a comparison with reduction method, (b) a self consistency check using dispersion relation and (c) a comparison with Laporta's method. We find agreement in all cases.
- To reduce the computation time, parallel computing is required.

