

#### Fred Olness

#### SMU

#### Thanks to:

M. Guzzi, J. Huston, C. Keppel, K. Kovarik, H. Lai, J.G. Morfin, P. Nadolsky, J.F. Owens, K. Park, J. Pumplin, H. Schellman, I. Schienbein, T. Stavreva, D. Stump, J.Y. Yu, C.-P. Yuan

Loopfest X Northwestern University 12 May 2011

#### LHC began collisions in 2010



Will the world be absorbed by a black hole?

http://www.HasTheLargeHadronColliderDestroyedTheWorldYet.com/

http://www.HasTheLargeHadronColliderDestroyedTheWorldYet.com/

### 

<script type="text/javascript"> if (!(typeof **worldHasEnded** == "undefined")) document.write("YUP."); } else { document.write("NOPE."); } </script>



#### The LHC is the ideal tool for a particular class of measurements unprecedented energy allows us to explore new kinematic realm

a need There is room for a broad range experiments

**Example:** Tevatron & HERA & LEP -- vibrant complementary physics programs

Foundations for "New Physics"

PDFs are certainly one of the foundations that our search for "new physics" is built upon





#### **Global PDF analyses combine Hadron-Hadron w/ other sets**



## LHC results



## W/Z

## Production

#### W/Z PRODUCTION









We saw this last year





## Asymmetry

$$A_{\mu} = \frac{d\sigma(W_{\mu^+}) - d\sigma(W_{\mu^-})}{d\sigma(W_{\mu^+}) + d\sigma(W_{\mu^-})}$$







Heidi Schellman DIS2011

April 11, 2011

#### Results compared to RESBOS+CTEQ6.6M





3 muon PT bins, PT(v) > 20 GeV

Upper Left – PT( $\mu$ ) > 20 GeV Upper Right 20 GeV < PT( $\mu$ ) < 35 GeV Lower Left PT( $\mu$ ) > 35 GeV

DIS2011 April 11, 2011

#### The puzzle of the CDF/D0 W lepton asymmetry

- CT10W set reasonably agrees with 3  $p_{T\ell}$  bins of  $A_e(y_e)$  and one bin of  $A_\mu(y_\mu)$  from D0 Run-2 (2008).
- NNPDF 2.0 (arXiv: 1012.0836) agrees with  $A_{\mu}(y_{\mu})$ , disagrees with two  $p_{Te}$  bins of  $A_{e}(y_{e})$ .
- CT10, many other PDFs fail.

| Agreement of            |                                     | Source or                  |
|-------------------------|-------------------------------------|----------------------------|
| PQCD with D0 $A_e(y_e)$ | $\chi^2/npt$                        | comments                   |
| CTEQ6.6, NLO            | 191/36=5.5                          | Our study;                 |
| CT10W, NLO              | 78/36=2.2                           | Resbos, NNLL-NLO           |
|                         | With $A_{\mu}(y_{\mu})$ : 88/47=1.9 |                            |
| ABKM'09, NNLO           | 540/24=22.5                         | Catani, Ferrera, Grazzini, |
| MSTW'08, NNLO           | 205/24=8.6                          | JHEP 05, 006 (2010)        |
| JR09VF, NNLO            | 113/24=4.7                          |                            |

## What is happening with d/u

This combination rather unique

$$A_{\ell} = \frac{d\sigma(W^+ \to \ell^+) - d\sigma(W^- \to \ell^-)}{d\sigma(W^+ \to \ell^+) + d\sigma(W^- \to \ell^-)}$$



Determined from DIS and DY on p and d

Uncertainties in determining parton distributions at large x.A.Accardi, W.Melnitchouk, J.F.Owens, M.E.Christy, C.E.Keppel, L.Zhu, J.G.Morfin arXiv:1102.3686 [hep-ph]

LHC values scaled appropriately

 $x_{1,2} \sim \frac{M}{\sqrt{s}} e^{\pm y}$ 



# W/ZProduction at LH()



Heavy Quark components play an increasingly important role at the LHC



Heavy Quark components play an increasingly important role at the LHC





#### **Di-muon production** $\Rightarrow$ Extract s(x) Parton Distribution



#### Nuclear Corrections: Compare Neutrino and Charged Lepton DIS 27





Where we left off last year ...

## Could there be a

## "compromise" fit

... some recent results by led by Karol Kovarik

Comparison: Charged Lepton and Neutrino DIS

| Weight       | Name of fit | $l^{\pm}A$ data | $\chi^2 (/\mathrm{pt})$ | $\nu A$ data  | $\chi^2 (/\mathrm{pt})$ | total $\chi^2$ (/pt) |
|--------------|-------------|-----------------|-------------------------|---------------|-------------------------|----------------------|
| w = 0        | decut3      | 708 🗸           | 638(0.90)               | - X           | -                       | 638~(0.90)           |
| w = 1/7      | glofac1a    | 708 🗸           | 645 (0.91)              | 3134 <b>X</b> | 4710 (1.50)             | $5355\ (1.39)$       |
| w = 1/4      | glofac1c    | 708 🗸           | 654 (0.92)              | 3134 <b>X</b> | 4501(1.43)              | 5155(1.34)           |
| w = 1/2      | glofac1b    | 708 🗸           | 680 (0.96)              | 3134 <b>X</b> | 4405 (1.40)             | 5085(1.32)           |
| w = 1        | global2b    | 708 <b>X</b>    | 736(1.04)               | 3134          | 4277(1.36)              | 5014(1.30)           |
| $w = \infty$ | nuanua1     | - X             | _                       | 3134          | 4192(1.33)              | 4192(1.33)           |



# How to reconcile with literature???

"Thus, nuclear effects in vA DIS are in line with those extracted from charged lepton DIS and Drell-Yan dilepton production."

> Hannu Paukkunen, DIS10

Paukkunen & Salgado, arXiv:1009.3143

| $\chi^2/DOF$ | CTEQ6.6 | $CTEQ6.6 \times EPS09$ |
|--------------|---------|------------------------|
| NuTeV        | 1.51    | 1.05                   |
| CHORUS       | 1.15    | 0.79                   |
| CDHSW        | 1.10    | 0.71                   |

#### nCTEQ with Uncorrelated Errors

| $\chi^2/DOF$   | $Q^2 > 4$ | $Q^2 > 5$ | $Q^2 > 5 + \text{gluon}$ |
|----------------|-----------|-----------|--------------------------|
| charged lepton | 1.16      | 1.13      | 1.06                     |
| neutrino       | 1.00      | 0.95      | 0.98                     |
| Total          | 1.02      | 0.99      | 1.00                     |

Good values of  $\chi^2$ 

#### Uncorrelated Errors: $\chi^2/DOF \sim 1$



15-Be/C $22 - He/D - Q^2$  $23-Kr/D - Q^2$  $24-Sn/C - Q^2$  $25-N/D - Q^2$ 26-C/D - DY 27-Ca/D - DY 28-Fe/D - DY 29-W/D - DY 30-Fe/Be - DY 31-W/Be - DY $32 - F_2^D$  $33-\nu Pb$  $34-\bar{\nu}Pb$  $35-\nu Fe$  $36-\bar{\nu}\mathrm{Fe}$ 37-CCFR  $\nu$ 38-NuTeV  $\nu$ 39-CCFR  $\bar{\nu}$ 40-NuTeV  $\bar{\nu}$ 

### Strange PDF: Recap

Nuclear Corrections limit our ability to use v-DIS for strange PDF extraction

Strange PDF affects "benchmark" W/Z cross sections

#### **Correlations are Important**

Highlights issues with v and  $\ell^{\pm}$  DIS

Issues exist even without correlations How to reconcile v and  $\ell^{\pm}$  DIS

These are LHC Benchmark processes!!!



### c & b

### Extrinsic & Intrinsic



Effect of an intrinsic charm component!



## What is the proper treatment of masses???

#### 2009 Les Houches Comparative Study



The SM and NLO Multileg Working Group: Summary report.J. Rojo, et al.,e-Print: arXiv:1003.1241 [hep-ph]

#### Comparison of ACOT & TR Schemes



Different schemes  $\Rightarrow$  Different PDFs  $\Rightarrow$  yet consistent  $\sigma$ 

Differences reduce at:

- 1) higher Q,
- 2) higher order

*If experiments are sensitive, time to compute to higher order* 



#### Search for "new physics" requires dependable foundation



