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Drell-Yan processes

✦ Used for measurement of W-boson mass and width, 
PDF determinations, Higgs discovery, background 
to New Physics searches

✦ Region of small qT≪M particularly relevant to 
extraction of W mass and reduction of background 
to Higgs searches

X (arbitrary hadron state)

hadron H1

γ, Z, W, H, ...

hadron H2



Z-boson production at Tevatron ...
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tematic uncertainties. We note that, due to the smooth-
ing introduced by the regularization condition imposed
during the second step of the data corrections, statistical
fluctuations in the measured cross section in each pZT bin
have been suppressed; however the statistical uncertain-
ties still accurately reflect the possible spread in each bin
which could be caused by such fluctuations. As a result,
care must be taken when using the data in any fits as this
suppression of fluctuations may lead to an artificially low
χ2 for any fit which describes the central values of the
data well. Table I also lists four multiplicative correction
factors for each bin, which can be applied to compare this
result to previous measurements: the factor labeled pµT
corrects for the effect of the muon pT> 15 GeV require-
ment; the factor labeled FSR corrects for QED FSR; the
factor labeled A then corrects from the measured lepton
acceptance to full 4π acceptance; and finally the factor
labeled M corrects from the measured mass window to
the larger mass window used in the D0 electron channel
measurement [13] (40–200 GeV). Applying only the pµT
factor results in the same dimuon definition as previous
Z/γ∗+jets measurements [15, 20]; unlike pZT , the vari-
ables studied in these previous measurements had mini-
mal dependence on the muon pT requirement, so a cor-
rection was applied by default. All factors are derived
using resbos interfaced to photos [33], as described in
the following text, and we provide only the central val-
ues without assessing possible systematic uncertainties.
However, deriving the same factors from the different the-
oretical calculations described in the following text indi-
cates that model dependence limits the accuracy of these
factors, particularly A for pZT > 20 GeV, to the level of
a few percent. Applying all factors to the data allows a
comparison to the D0 electron channel measurement, as
shown in Fig. 2. Within the limitations of this compari-
son, the agreement is reasonable. For direct comparisons
with theory, these correction factors are not applied to
the dimuon data.
To compare to the data, predictions for the pZT dis-

tribution are obtained from several theoretical calcula-
tions. Predictions from pQCD are obtained with mcfm,
by evaluating both the differential distribution and to-
tal cross section at either leading order (LO) or next-to-
leading order (NLO):

f(pT ) ≡
1

σZ/γ∗

∣
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(N)LO
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dσZ/γ∗

dpT
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where the first term is of order O(α0
s) at LO and O(α1

s)
at NLO, while the second term is O(α1

s) at LO and
O(α2

s) at NLO. This approach differs from the treat-
ment of the pQCD calculation in the D0 electron chan-
nel measurement. There, both the total cross section
and differential distribution were calculated to the same
power of the strong coupling constant, O(α2

S), yield-
ing a NNLO total Z/γ∗ cross section (and was labeled
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FIG. 2: Measurements of the normalized differential cross
section in bins of pZT for the dielectron [13] and dimuon chan-
nels. Both results are shown with combined statistical and
systematic uncertainties.

“NNLO”), but a NLO differential distribution. The pre-
scription used here, calculating both the total and differ-
ential cross section to the same number of contributing
terms in the perturbative expansion, results in a reduced
scale dependence and improved convergence of the per-
turbative series [37]. The total cross section is evalu-
ated using the inclusive pp̄ → Z/γ∗ + X process at LO
and NLO, and the differential distribution evaluated us-
ing the pp̄ → Z/γ∗+ jet+X process again at LO and
NLO, with no limit on the jet rapidity but requiring jet
pT > 2.5 GeV to remove the divergence as pT → 0. The
same requirements are placed on the muons as for the
data analysis, and the differential Z/γ∗ pT distribution
close to the jet pT cutoff is excluded. The MSTW2008
LO and NLO PDFs [38] are used throughout in calcu-
lating the LO and NLO processes respectively. In all
cases, renormalization and factorization scales are set to
the sum in quadrature of the mass and pT of the Z/γ∗ in
each event, and the dependence on this choice is assessed
by varying both scales simultaneously up and down by a
factor of 2, both for the differential distribution and the
inclusive Z/γ∗ cross section used in normalization. PDF
uncertainties are assessed using the MSTW2008 68% er-
ror sets, again taking into account the effect on the dif-
ferential distribution and the inclusive Z/γ∗ cross section
used in normalization. These are found to be approxi-
mately a factor of two smaller than the scale uncertainties
at NLO, and negligible compared to the scale uncertain-
ties at LO. The prediction from mcfm must then be cor-
rected for the effects of QED FSR from the muons. These
corrections are derived from the resbos+photos sample
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... and at LHC
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Figure 2: pT of the Z candidates in the electron channel (a) and muon channel (b) after final selection.

4 Background expectations for the Z → �� candidates

A partially data-derived estimate of the QCD background is made for the electron channel using the same
procedure as described in Ref [2] and using the same QCD scale factor as observed in that measurement.
A QCD background Monte Carlo sample is used to estimate the number of pairs of charged leptons that
both pass the “loose” electron requirement ( as decribed in Ref. [2]) within the mass window 66 < mee <
116 GeV. A data-derived “loose” to “medium” rejection factor for the leptons is then used to estimate
the expected number of lepton pairs which both pass the nominal Z → ee requirements. The ratio of
“medium” to “loose” electrons with ET > 20 GeV within the η acceptance of the detector is measured
in data to be 0.15 ± 0.01(stat). This result is consistent with the equivalent number derived from the
QCD background Monte Carlo. In the Z mass window 66 < mee < 116 GeV, the Monte Carlo predicts
14.2 ± 3.4(stat) QCD background events in the opposite-charge invariant mass distribution for “loose”
lepton pairs. By applying the data-derived rejection factors to each electron in these pairs, a background
estimate totalling 0.31 ± 0.07(stat) ± 0.05(syst) events in the opposite-charge distribution in the Z mass
window is derived. Within the mass window 66 < mee < 116 GeV, the remaining sources of backgrounds
(W → eν: 0.06 events and tt: 0.08 events) are expected to be flat as a function of the invariant mass while
Z→ ττ background (0.04 events) is expected to drop off sharply. The total expected background within
the invariant mass window 66 < mee < 116 GeV is then 0.49 ± 0.07(stat) ± 0.05(syst) events.

The total number of expected background events in the muon channel within the mass window 66 <
mµµ < 116 GeV after all requirements as estimated from Monte Carlo samples described in Table 1 is
0.17± 0.01(stat)± 0.01(syst) and consists of tt (0.08 events), Z → ττ (0.06 events), bb (0.02 events), and
W → µν (0.01 events). All other sources of background are negligible in comparison.

The number of same-charge lepton pairs that otherwise satisfy all other requirements is a good indi-
cator of the level of background in the selection. In the electron channel, only one same-charge lepton
pair (at mee = 82.8 GeV) satisfies all Z selection requirements within the invariant mass window while
there are none in the muon channel.
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Figure 12: The corrected transverse momentum distribution combining electron and muon
channels. The errors are the the statistical and systematic errors added in quadrature, and are
assumed uncorrelated between the muon and electron channels.



Drell-Yan processes

✦ Classical two-scale problem (qT≪M), for 
which large Sudakov logarithms                 
arise that must be resummed

∼ (αs ln2M/qT )n



Drell-Yan processes

✦ Transverse momentum of Drell-Yan object 
(W, Z, H) due to initial-state radiation (ISR) 
off collinear partons

✦ Simple example of beam jets described by 
beam functions in SCET

✦ Yet many surprises and subtleties arise, which 
may be relevant also for other applications of 
beam functions in jet processes

Stewart, Tackmann, Waalewijn 2009



Jet broadening in e+e- annihilation

✦ Broadening measures transverse momenta 
relative to thrust axis:

✦ Total and wide broadening defined as:

L R

!nT

Figure 1: A typical event with small broadening consists of energetic collinear partons in each
hemisphere (blue lines) accompanied by soft radiation (red wiggly lines). The total transverse
momentum with respect to the thrust axis !nT vanishes in each hemisphere.

ingredients to the factorization formula are well defined, and the regulators can be removed
in the cross section, but the regularization induces Q-dependence which remains. However,
the regulator independence of the product of jet and soft functions gives a strong constraint
on the dependence of the individual functions on Q and implies that the dependence on the
momentum transfer must exponentiate [8, 7].

A complication, as compared to the case of qT resummation in Drell-Yan is that not only
collinear modes contribute, but also a semi-hard mode, whose momentum components scale
as pµ

s ∼ qT . In the following we will for simplicity refer to this momentum region as soft,
but it is important to distinguish it from the usual soft mode, whose components scale as
pµ

sh ∼ q2
T /Q, and which does not contribute to the broadening. The reason that the semi-

hard mode does not contribute to qT resummation in Drell-Yan is that the corresponding
loop integrals are all scaleless and can be omitted after proper regularization [7]. In contrast,
the integrals are not scaleless in the present case, since the radiation is restricted to one
of the hemispheres. An interesting question is whether additional momentum regions could
contribute at higher orders. We have studied the corresponding two loop integrals in QCD
and did not find additional regions. [ What exactly is our statement? ] For a full
factorization proof one would need to show that one has all the relevant momentum regions
to all orders in perturbation theory.

We have stressed that the jet and soft function relevant for broadening are not defined with-
out additional regularization. Leaving this issue aside for the moment, the naive factorization
theorem for small broadening has the form

1

σ0

d2σ

dbLdbR
= H(Q2, µ)

∫
dbs

L

∫
dbs

R

∫
dd−2p⊥L

∫
dd−2p⊥R

JL(bL − bs
L, p⊥L , µ)JR(bR − bs

R, p⊥R, µ)S(bs
L, bs

R,−p⊥L ,−p⊥R, µ) . (3)

The convolutions over bs
L,R arise because the physical broadening is the sum of the soft and

the collinear broadening. The definition of the thrust axis ensures that the total transverse
momentum vanishes in each hemisphere, so if the collinear partons have transverse momentum
p⊥L , the transverse momentum of the soft partons in the left hemisphere must be equal and
opposite.

The hard function H(Q2, µ) = |CV (−Q2 + iε, µ)|2 is just the quark vector form factor

2

1 Broadening

With each hadronic event in an e+e− collision one associates a thrust axis !nT which is the
direction of maximum three-momentum flow. The particles of the event can then be divided
into two groups: the ones moving in the thrust direction !p·!nT > 0, and the rest. For simplicity,
we now assume that !nT points to the left, and refer to the two groups of particles as the left
moving and right moving. The left broadening is defined as the sum of the absolute values of
the transverse momenta of the left-moving particles [1, 2]

bL =
1

2

∑

i

|!p⊥i | =
1

2

∑

i

|!pi × !nT | , (1)

and analogously one obtains bR. Usually, one normalizes the broadening to the center-of-mass
energy Q, and defines BL = bL/Q, but we prefer to work with the dimensionful quantity bL.
What is measured experimentally is the total broadening bT = bL + bR, as well as the wide
broadening bW = max(bL, bR).

In the following, we are interested in the region of small but perturbative broadening,
ΛQCD " bT " Q, where ΛQCD is a typical scale associated with non-perturbative strong-
interaction physics. Despite the fact that bT is in the perturbative domain, fixed-order per-
turbation theory breaks down at small bT , because large logarithms of the ratio BT = bT /Q
arise. For the fraction of events with broadening smaller than bT , for example, one obtains at
next-to-leading order, up to terms which vanish in the limit BT → 0,

R(BT ) =
1

σ0

∫ BT Q

0

dbT
dσ

dbT
= 1 +

CFαs

2π

[
−4 ln2 BT − 6 ln BT − 7 + π2

]
, (2)

in which these Sudakov logarithms are manifest.
To obtain reliable predictions for small broadening, these enhanced corrections must be

resummed to all orders. At leading-logarithmic order, this was achieved in [3]. To this accu-
racy, the broadening can be written as a product of two jet functions in Laplace space. An
improved version of this result, valid also at the single logarithmic level, was later presented
in [4]. However, an all-order formula for broadening which is free of large logarithms is still
missing. Event shapes such as thrust, factorize in a hard function, two jet functions and a
soft function, which forms the basis for an all-order resummation of logarithmically enhanced
corrections. This was shown in [5] for an entire class of event shape variables, but it was
also pointed out that this factorization breaks down for broadening. The same class of event
shapes was recently reanalyzed in Soft-Collinear Effective Theory in [6], which concluded that
the usual effective theory power counting breaks down for broadening.

In this letter, we present an all-order formula for the broadening, which is free of large
logarithms. We show that while the usual soft-collinear factorization indeed breaks down
for this variable, this breaking has a very specific form. In the effective theory, it manifests
itself as a collinear anomaly and produces dependence on the momentum transfer Q in the
product of the two jet functions. The factorization analysis is similar to the one for qT

resummation in Drell-Yan production [7]. As in this case, one needs additional regulators to
obtain well-defined expressions in the effective theory. With the regulators in place, all the
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Jet broadening in e+e- annihilation

✦ Important event shape, relevant for precision 
determination of αs

✦ Cross section is largest for bL,R≪Q=√s, where 
resummation of Sudakov logarithms is 
required for reliable prediction

✦ But so far no all-order factorization theorem 
existed for jet broadening

L R

!nT

Figure 1: A typical event with small broadening consists of energetic collinear partons in each
hemisphere (blue lines) accompanied by soft radiation (red wiggly lines). The total transverse
momentum with respect to the thrust axis !nT vanishes in each hemisphere.

ingredients to the factorization formula are well defined, and the regulators can be removed
in the cross section, but the regularization induces Q-dependence which remains. However,
the regulator independence of the product of jet and soft functions gives a strong constraint
on the dependence of the individual functions on Q and implies that the dependence on the
momentum transfer must exponentiate [8, 7].
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collinear modes contribute, but also a semi-hard mode, whose momentum components scale
as pµ

s ∼ qT . In the following we will for simplicity refer to this momentum region as soft,
but it is important to distinguish it from the usual soft mode, whose components scale as
pµ

sh ∼ q2
T /Q, and which does not contribute to the broadening. The reason that the semi-

hard mode does not contribute to qT resummation in Drell-Yan is that the corresponding
loop integrals are all scaleless and can be omitted after proper regularization [7]. In contrast,
the integrals are not scaleless in the present case, since the radiation is restricted to one
of the hemispheres. An interesting question is whether additional momentum regions could
contribute at higher orders. We have studied the corresponding two loop integrals in QCD
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JL(bL − bs
L, p⊥L , µ)JR(bR − bs

R, p⊥R, µ)S(bs
L, bs
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The convolutions over bs
L,R arise because the physical broadening is the sum of the soft and

the collinear broadening. The definition of the thrust axis ensures that the total transverse
momentum vanishes in each hemisphere, so if the collinear partons have transverse momentum
p⊥L , the transverse momentum of the soft partons in the left hemisphere must be equal and
opposite.

The hard function H(Q2, µ) = |CV (−Q2 + iε, µ)|2 is just the quark vector form factor
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Collinear Anomaly



Soft-collinear factorization in SCET

✦ Common to Drell-Yan at small qT and jet 
broadening at small bL,R is that observables 
select final-state partons with small transverse 
momenta

✦ Partons can be (anti-)collinear, aligned with 
initial- or final-state jets, or soft

✦ Describe these in soft-collinear effective 
theory (SCET) in terms of (anti-)collinear and 
soft quark and gluon fields

p⊥i = λM ; λ � 1



Soft-collinear factorization in SCET

✦ Relevant effective theory SCETII contains 
collinear, anti-collinear, and soft partons with 
momenta: 

✦ Classical effective Lagrangian contains no 
interactions between different modes, implying 
a complete factorization:

LSCETII = Lc + Lc̄ + Ls

pc̄i ∼ (1,λ2,λ)M

pci ∼ (λ2, 1,λ)M

psi ∼ (λ,λ,λ)M



Soft-collinear factorization in SCET

✦ If this was true, then:

✦ But RGE for hard function shows that this 
cannot be correct: 

✦ RG invariance of cross section implies that 
soft-collinear part               must carry some 
hidden (anomalous) dependence on Q 

dσ ∼ H(Q,µ)φc(qT , µ)φc̄(qT , µ)S(qT , µ)

We can now evaluate (28) with the particular choice ν2 = Q/τ̄L, for which

lnP = k2(µ) ln
2(Qτ̄L) +

[
kL
1 (τL, zL, µ)− kR

1 (τR, zR, µ)
]
ln(Qτ̄L) + . . . , (31)

where the dots represent Q-independent terms. Finally, the fact that the result must be
left-right symmetric implies that kL

1 (τ, z, µ) + k2(µ) ln(µτ̄ ) = −kR
1 (τ, z, µ) − k2(µ) ln(µτ̄) ≡

−2FB(τ, z, µ), and hence the final answer can be written in the form

lnP =
k2(µ)

4
ln2

(
Q2 τ̄Lτ̄R

)
− FB(τL, zL, µ) ln

(
Q2τ̄ 2L

)
− FB(τR, zR, µ) ln

(
Q2τ̄ 2R

)

+ lnW (τL, τR, zL, zR, µ) ,

(32)

where the remainder function W is independent of Q and left-right symmetric.
We can gain further information by exploiting the fact that the cross section (27) and hence

the product H(Q2, µ)P (Q2, τL, τR, zL, zR, µ) must be RG invariant. From the RG equation
for the hard function [15]

d

d lnµ
H(Q2, µ) =

[
2Γcusp(αs) ln

Q2

µ2
+ 4γq(αs)

]
H(Q2, µ) , (33)

it then follows that

d

d lnµ
k2(µ) = 0 ,

d

d lnµ
FB(τ, z, µ) = Γcusp(αs) ,

d

d lnµ
W (τL, τR, zL, zR, µ) =

[
2Γcusp(αs) ln

(
µ2τ̄Lτ̄R

)
− 4γq(αs)

]
W (τL, τR, zL, zR, µ) .

(34)

The first equation implies that k2 must be a constant. From the fact that at tree level this
constant vanishes it follows that k2 = 0 to all orders, since there would be no way to compensate
the scale dependence of the coupling αs(µ). Next, using our explicit one-loop results in (18)
and (21), we find that

FB(τ, z, µ) =
CFαs

π

[
ln(µτ̄) + ln

√
1 + z2 + 1

4

]
+O(α2

s) . (35)

We are now in the position to state the main result of this paper, which is the corrected,
all-order generalization of the naive factorization theorem (9) for the Laplace-transformed
double-differential cross section. Relation (32), combined with the fact that k2 = 0, implies
that the anomalous dependence of the jet and soft functions on Q exponentiates, and that the
cross section can be refactorized in the form

1

σ0

d2σ

dτL dτR
= H(Q2, µ)

∫ ∞

0

dzL

∫ ∞

0

dzR
(
Q2τ̄ 2L

)−FB(τL,zL,µ) (Q2τ̄ 2R
)−FB(τR,zR,µ)

×W (τL, τR, zL, zR, µ) .

(36)

This result contains two sources of Q dependence: one arising from the hard functionH(Q2, µ),
and an additional one stemming from the collinear anomaly. Once the RG equation (33) for
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φc φc̄ S

→ not observed in previous SCET papers on qT resummation: 
Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

Sudakov (cusp) logarithm

Q independent!



Soft-collinear factorization in SCET

✦ At classical level, the SCETII Lagrangian

exhibits certain symmetries, e.g.:
✦      is invariant under rescalings                of 

anti-collinear jet momentum
✦      is invariant under rescalings                of 

collinear jet momentum 
✦ This symmetry is anomalous, not preserved by 

regularization (broken to subgroup             )

LSCETII = Lc + Lc̄ + Ls

Lc p̄ → λ̄p̄

Lc̄ p → λp

λλ̄ = 1

“collinear anomaly” Becher, MN 2010



Soft-collinear factorization in SCET

✦ Not an anomaly of QCD, but of the effective 
theory relevant to QCD factorization

✦ In a different context (B→π  form factor), 
Beneke called this the “factorization anomaly”

✦ Fact that additional Q dependence arises from 
a quantum anomaly gives rise to stringent 
constraints, which imply that it exponentiates; 
e.g. for Drell-Yan production at small qT:
�
Q2x2

T

�−F (x2
T ,µ)

= exp
�
−F (x2

T , µ) ln
�
Q2x2

T

��

single logarithmcalculable if xT≪Λ-1

Dubna lectures 2005 



Soft-collinear factorization in SCET

✦ There exist many ways to regularize the loop 
graphs giving rise to the anomaly, but dimen-
sional regularization alone is not sufficient

✦ Here we use analytic regularization
✦ Other schemes have been proposed, e.g. the 

“rapidity RG”, but their consistency has not                          
yet been demonstrated beyond 1-loop order 

✦ For any consistent scheme, final results will be 
independent of the regularization procedure                

Smirnov 1993

Chiu, Jain, Neill, Rothstein 2011; see also: Manohar, Stewart 2006



Factorization and Resummation for the 
Drell-Yan Cross Section at small qT

(T. Becher, MN, arXiv:1007.4005)



Drell-Yan cross section in SCET

✦ Naive soft-collinear factorization: 

✦ In our regularization scheme the soft 
contribution in this particular case gives rise to 
scaleless integrals that vanish

J(M2
2 , µ)J(M2

1 , µ)

S(Λ2
s, µ)

H(Q2
, µ)

soft function

jet function
hard function



Drell-Yan cross section in SCET

✦ Absence of soft contributions k~(λ,λ,λ) follows 
after proper multipole expansion using that x~
(1,1, λ-1), which implies:

✦ Relevant loops integrals such as

are scaleless and vanish in dimensional 
regularization

regulator d = 4−2ε is kept in place. However, with analytic regulators the contributions of the
different momentum regions are now well-defined individually and one can check which regions
give non-vanishing contributions to the expansion of the loop integrals. One finds that only the
hard, hard-collinear, and anti-hard-collinear regions contribute. If the diagrams are evaluated
off-shell, then also a soft contribution arises in the individual diagrams, but one easily verifies
that the contribution of a semi-hard mode vanishes. Since such contributions were considered
in the literature, we now explicitly show they are absent in analytical regularization. To do so,
one assumes that the gluon momentum k in the QCD diagram in Figure 1 scales as M(λ, λ, λ)
and then expands the diagram in powers of λ. At leading power, the relevant phase-space
integral becomes

∫
ddk

1

(n · k − iε)1+α

1

(n̄ · k − iε)1+β
δ(k2) θ(k0) eip·x−ik⊥·x⊥ . (31)

After the expansion, the integrand involves the usual eikonal propagators characteristic for
soft emissions, which are raised to fractional powers because of the analytic regulators. It
is important that not only the propagator denominators, but also the Fourier exponent is
multipole expanded:

(p − k) · x = p · x − k⊥ · x⊥ + O(λ) , (32)

which follows from the scaling x ∼ (1, 1, λ−1) derived in Section 2. Performing the integration
over the light-cone components of the gluon momentum, one finds that the integral (31) is
scaleless and vanishes.

We note that the multipole expansion was not performed in [25], which explains why similar
integrals were found to be non-vanishing in this reference. However, the expansion is a crucial
ingredient to achieve scale separation for effective theories in dimensional regularization. It
is equally important in the strategy of region technique [19, 20]. Without performing the
expansion integrals pick up contributions from several regions, and care needs to be taken to
avoid double counting.

Having shown that the soft and semi-hard regions do not contribute, let us now turn to the
hard-collinear contributions. Since the original diagrams are well defined without analytical
regulators and are obtained by adding up the contributions from the different regions, we are
guaranteed that the limits α → 0 and β → 0 can be taken in the sum of all diagrams and
that the final result is independent of the regularization scheme. Individually, however, the
diagrams in each sector involve divergences in the analytical regulators. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 1, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 1. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (33)

Note that, as mentioned earlier in Section 2.2, the regularized Feynman rule for the anti-hard-
collinear Wilson line is no longer invariant under the rescaling transformation p → λp. As
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Side remark:



Drell-Yan cross section in SCET

✦ Remaining naive factorization formula:

✦ Transverse PDF:

H(Q2
, µ)

〈N1(p)| χ̄hc(x+ + x⊥)/̄n χhc(0) |N1(p)〉

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,
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3NcM2s

∣
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∣

2 1
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×
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q

e2
q

[

Bq/N1
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2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)
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+ O
(
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T

M2

)
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(10)
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+ O
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(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
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M2 + q2
T

s
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[
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(z1, x
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(
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T M2

4e−2γE
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Bq/N1
(z1, x
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T , µ)Bq̄/N2

(z2, x
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T , µ) ,

dFqq̄(x2
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d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x
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T , µ) ,

2

“hard function” ⊗   “transverse PDF” ⊗  “transverse PDF” 

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

2

This spells trouble: well known that transverse PDF 
not well defined without additional regulator



Drell-Yan cross section in SCET

✦ Remaining naive factorization formula:

where:

✦ Resummation would then be accomplished by 
solving the RGE for the hard function: 
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We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣

∣CV (−M2, µ)
∣

∣

2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

1

x2
T M2

)

.

(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]
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∫ 1

ξ

dz

z
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2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain
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(21)
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→ see SCET papers by:  Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009



Drell-Yan cross section in SCET

✦ Remaining naive factorization formula:

where:

✦ Resummation would then be accomplished by 
solving the RGE for the hard function: 
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We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find
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By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2
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QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain
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(21)
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→ see SCET papers by:  Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009
This must be wrong!



Collinear anomaly

✦ RG invariance of the cross section requires 
that the product                                           
must contain a hidden M dependence

✦ Analyzing the relevant diagrams, we find that 
an additional regulator is needed to make 
transverse PDFs well defined; in the product 
of two PDFs this regulator can be removed, 
but an anomalous M dependence remains:
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Collinear anomaly

✦ Regular soft-collinear factorization:

J(M2
2 , µ)J(M2

1 , µ)

S(Λ2
s, µ)

H(Q2
, µ)



Collinear anomaly

✦ Anomalous soft-collinear factorization:

26

H(Q2
, µ)

F (x⊥, µ) ln(x2
⊥Q2)

Bq/N1(x⊥, µ) Bq̄/N2(x⊥, µ)



Transverse PDFs

✦ The “operator definition of TMP PDFs is 
quite problematic [...] and is nowadays under 
active investigation”

✦ Our result:                                   
Regularization of individual transverse PDFs 
is delicate, but the product of two transverse 
PDFs is well defined and has a specific 
dependence on hard momentum transfer M2

Cherednikov, Stefanis 2009

for a review, see:  Collins 2003, 2008
for an elegant recent definition, see:  Collins 2011

“What God has joined together, let no man separate...”



Comparison with the CSS formula

✦ Classic result from Collins-Soper-Sterman: 

✦ Disadvantages compared with our approach: 
✦    integral hits the Landau pole of running coupling 

and requires PDFs at arbitrarily low scales
✦ practical calculations employ an xT-space cutoff, 

which introduces some ad hoc model dependence

µb =
2e−γE

xT

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

1

4π

∫
d2x⊥ e−iq⊥·x⊥

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

× exp

{

−
∫ M2

µ2
b

dµ̄2

µ̄2

[
ln

M2

µ̄2
A

(
αs(µ̄)

)
+ B

(
αs(µ̄)

)]
}

(71)
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]

It is a straightforward exercise to work out the relations between the various objects in
this formula and ours. We find
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where
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The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(
7π2

3
− 16

)
. (74)

The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].

5The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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orders. The integral K(η, a, r) and its derivative with respect to η can easily be evaluated
numerically. We have not succeeded to derive a suitable analytic expression for this integral
in the general case where r != 1 and η is not close to 1.

6 Comparison with the literature

The standard formalism for transverse-momentum resummation has been developed in a sem-
inal paper by Collins, Soper, and Sterman (CSS) [4]. According to this work, the resummed
differential cross section at leading power can be written in the form
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where µb = b0/xT is assumed to be in the perturbative domain. It is a straightforward exercise
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The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (71) are compatible with our perturbative results.

Note that according to (71) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
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The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (71) are compatible with our perturbative results.

Note that according to (71) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
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The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (71) are compatible with our perturbative results.

Note that according to (71) the coefficient A in the CSS formula differs from the cusp
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g2(αs) = lnH(−µ
2
, µ)

Pi/N (ξ, xT ) = H(−µ
2
b , µb)Bi/N (ξ, x2

T , µb)



Comparison with the CSS formula

✦ Only linear dependence on log(Q) in exponent 
can be made consistent with CSS formula!

✦ Non-trivial soft function absent in CSS, too!

✦ Anomaly implies a non-trivial contribution to 
A, such that                           in this case!

✦ Can predict unknown 3-loop coefficient of A 
based on known 2-loop result for B: 
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The one-loop coefficients are dq
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The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

5The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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→ missed by all previous SCET analyses:  
Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

The two-loop coefficient dq
2 has been given in (48), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (60) are compatible with our perturbative results.

Note that according to (60) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.2 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (63)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (48). Inserting the coefficients
dq,g

2 into (63), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.
While we obtained the closed-form expressions (49) and (57) for the cross section directly

in momentum space, the CSS formula (59) involves a Fourier integral over xT . Because of
the inherent scale choice µ = µb = b0/xT , this integration cannot be performed analytically.
Worse, since the integrand involves αs(µb), the integration hits the Landau pole in the running
coupling, so that a prescription is needed to regularize the integral. In practical applications,
the integration is cut off at large xT values. To account for the missing long-distance contri-
butions a non-perturbative model function is used. For qT in the perturbative domain these
contributions are formally power suppressed, but it is irritating that an explicit prescription
for how to deal with them is needed even for qT values deep in the perturbative regime. Special
care has to be taken in order not to induce unphysical power corrections in the cut-off proce-
dure [48]. The explicit cut-off also makes it difficult to perform the matching to fixed-order
computations, since resummation effects persist even when the CSS formula is evaluated at
large qT ∼ M , as discussed in [49]. All of these complications are absent in our resummed re-
sults (49) and (57). Our expressions are given directly in momentum space and do not involve
a Landau-pole singularity. In the spirit of effective field theory, we never perform scale setting
inside integrals over the running coupling αs(µ). Instead, the scales are chosen such that the
integrated result is free of large logarithms. The matching onto fixed-order computations is
completely trivial, since our analytic result (57) can easily be reexpanded in powers of a fixed
coupling αs(µ). Moreover, in contrast to the CSS formula, the resummation switches itself off
adiabatically when µ ∼ qT approaches M , since all the logarithms become small and the RG

2The first relation in (60) can be found, in almost precisely this form, in equation (3.13) of [4]. For reasons
that are not known to us, the fact that A #= ΓF

cusp is nevertheless largely ignored in the literature.
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→ important effect



Simplification for xT «Λ-1 (large qT)

✦ Can perform operator product expansion:

✦ Only the product of two                   functions 
is well defined due to the anomaly:

✦ Using analytic regulators in the calculation of 
these functions is very economical, since it 
does not introduce any new scales

It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)
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)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always

10

〈N1(p)| χ̄hc(x+ + x⊥)/̄n χhc(0) |N1(p)〉

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2

T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2

T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

2

anomalous q2 dependence



✦ Factorized cross section at small qT:

✦ Hard-scattering kernels:

✦ Two sources of M dependence: hard function 
and collinear anomaly

For SCET beam functions, an analogous expansion was considered in [17] and an expression
for the one-loop kernel of the quark beam function was derived in [18]. The evolution equations
for the new kernels Ii←j follow when we combine (14) with the standard DGLAP equations

d

d ln µ
φi/N(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, µ) φj/N(u, µ) . (20)

We obtain

d

d lnµ
Iq←i(z, x

2
T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Iq←i(z, x
2
T , µ)

−
∑

j

∫ 1

z

du

u
Iq←j(u, x2

T , µ)Pj←i(z/u, µ) .

(21)

Because of the complicated form of the DGLAP equations, no closed solution can be derived.
Neglecting power corrections of order Λ2

QCD/q2
T , we can use relation (19) to express the dif-

ferential cross section (16) as a convolution of perturbative, factorized hard-scattering kernels

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(22)

with ordinary PDFs. The result reads

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(23)

This formula, as well as relations (24) and (26) below, receive power corrections in the two
small ratios q2

T /M2 and Λ2
QCD/q2

T . This will not be indicated explicitly.
Integrating this result over rapidity, with |y| ≤ ln(1/τ), we obtain

d2σ

dM2 dq2
T

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥τ

dz1

z1

dz2

z2

×
[

Cqq̄→ij(z1, z2, q
2
T , M2, µ) ffij

( τ

z1z2
, µ

)

+ (q, i ↔ q̄, j)

]

,

(24)

where the parton luminosities are defined as

ffij(u, µ) =

∫ 1

u

dz

z
φi/N1

(z, µ) φj/N2
(u/z, µ) . (25)

9

For the first two expansion coefficients, we obtain

Fqq̄(L⊥, αs) =
αs

4π
ΓF

0 L⊥ +
(αs

4π

)2
[

ΓF
0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
2

]

(22)

dq
2 = CF

[

CA

(

808

27
− 28ζ3

)

−
224

27
TF nf

]

(23)

Fqq̄(L⊥, αs)

CF
=

Fgg(L⊥, αs)

CA
(24)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
M

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(25)

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(26)

Cqq̄→ij(z1, z2, q
2
T , M2, µ) = H(M2, µ)

1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(27)

µ = µb = 2e−γE x−1
⊥

µ = qT

(28)

µ = µb = 2e−γE/x⊥

A(3) = ΓF
2 + 2β0d

q
2 = 239.2 − 652.9 $= ΓF

2 (29)

A(3) = ΓF
2 + β0 g′′

1(0) = 239.2 − 652.9 $= ΓF
2 (30)

exp
(

−αscL
2
⊥

)

(31)

η =
CFαs

π
ln

M2

µ2
= O(1) (32)

4
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Factorization for jet broadening

Problem that individual jet and soft functions are 
not well defined without additional regularization 
also arises in other factorization theorems
✦ electroweak Sudakov resummation (and any 

other process at high Q2 with small but 
nonzero masses)

✦ other observables sensitive to transverse 
momenta, such as jet broadening

Chiu, Golf, Kelley, Manohar 2007
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Factorization for jet broadening

✦ Naive factorization theorem for broadening, 
(jets recoil against soft radiation):

✦ Non-trivial soft function arises in this case, 
since radiation is restricted to hemispheres

L R

!nT

Figure 1: A typical event with small broadening consists of energetic collinear partons in each
hemisphere (blue lines) accompanied by soft radiation (red wiggly lines). The total transverse
momentum with respect to the thrust axis !nT vanishes in each hemisphere.

ingredients to the factorization formula are well defined, and the regulators can be removed
in the cross section, but the regularization induces Q-dependence which remains. However,
the regulator independence of the product of jet and soft functions gives a strong constraint
on the dependence of the individual functions on Q and implies that the dependence on the
momentum transfer must exponentiate [8, 7].

A complication, as compared to the case of qT resummation in Drell-Yan is that not only
collinear modes contribute, but also a semi-hard mode, whose momentum components scale
as pµ

s ∼ qT . In the following we will for simplicity refer to this momentum region as soft,
but it is important to distinguish it from the usual soft mode, whose components scale as
pµ

sh ∼ q2
T /Q, and which does not contribute to the broadening. The reason that the semi-

hard mode does not contribute to qT resummation in Drell-Yan is that the corresponding
loop integrals are all scaleless and can be omitted after proper regularization [7]. In contrast,
the integrals are not scaleless in the present case, since the radiation is restricted to one
of the hemispheres. An interesting question is whether additional momentum regions could
contribute at higher orders. We have studied the corresponding two loop integrals in QCD
and did not find additional regions. [ What exactly is our statement? ] For a full
factorization proof one would need to show that one has all the relevant momentum regions
to all orders in perturbation theory.

We have stressed that the jet and soft function relevant for broadening are not defined with-
out additional regularization. Leaving this issue aside for the moment, the naive factorization
theorem for small broadening has the form

1

σ0

d2σ

dbLdbR
= H(Q2, µ)

∫
dbs

L

∫
dbs

R

∫
dd−2p⊥L

∫
dd−2p⊥R

JL(bL − bs
L, p⊥L , µ)JR(bR − bs

R, p⊥R, µ)S(bs
L, bs

R,−p⊥L ,−p⊥R, µ) . (3)

The convolutions over bs
L,R arise because the physical broadening is the sum of the soft and

the collinear broadening. The definition of the thrust axis ensures that the total transverse
momentum vanishes in each hemisphere, so if the collinear partons have transverse momentum
p⊥L , the transverse momentum of the soft partons in the left hemisphere must be equal and
opposite.

The hard function H(Q2, µ) = |CV (−Q2 + iε, µ)|2 is just the quark vector form factor

2

p⊥soft ∼ p⊥collinear ∼ bL ∼ bR � Q

must be resummed to all orders. At leading double-logarithmic order this was achieved in
[11]. To this accuracy the broadening can be written as a product of two jet functions in
Laplace space. An improved version of this result, valid also at the single logarithmic level,
was later presented in [12]. However, an all-order formula for broadening which is free of large
logarithms was missing. Near the two-jet limit, event shapes such as thrust factorize into a
convolution of a hard function, two jet functions, and a soft function, and this factorization
forms the basis for an all-order resummation of logarithmically enhanced corrections. This
was shown in [13] for a large class of event-shape variables, but it was also pointed out that
this factorization breaks down for broadening. The same class of event shapes was recently
reanalyzed in Soft-Collinear Effective Theory (SCET) in [14], which concluded that the usual
effective-theory power counting breaks down for broadening.

While the naive soft-collinear factorization indeed breaks down for broadening, we never-
theless manage to derive in this paper all-order formulae for the total and wide broadening
distributions, which are free of large logarithms. The reason is that the breaking of factoriza-
tion has a very specific origin. In the effective theory, it manifests itself as a collinear anomaly,
which generates an additional dependence on the large momentum transfer Q in the product of
the jet and soft functions. In the effective theory the collinear anomaly is a quantum anomaly
in the usual sense, that a symmetry of the classical (effective) Lagrangian is not preserved by
the regularization. The factorization analysis is similar to the one for small-qT resummation
in Drell-Yan production [15]. As in this case, in an intermediate step one needs to introduce
additional regulators beyond dimensional regularization in order to obtain well-defined ex-
pressions in the effective theory. When the regulators are removed in the final predictions for
physical cross sections, the anomalous Q dependence remains. The regulator independence
of the product of jet and soft functions gives a strong constraint on the dependence of the
individual functions on Q, implying that this dependence must exponentiate [15, 16].

The analysis of jet broadening is complicated by the fact that not only collinear modes,
but also a soft mode (using SCETII terminology), whose momentum components scale as
pµs ∼ bT , give a leading contribution to the cross section. In contrast to the present case, this
soft mode does not contribute to qT resummation in Drell-Yan production at small transverse
momentum, because the corresponding loop integrals are scaleless and can be omitted after
proper regularization [15]. This is no longer the case for jet broadening, since the radiation
is restricted to one of the hemispheres. Interestingly, we verified that starting at two-loop
order the ultra-soft momentum region pµus ∼ b2T /Q also gives non-vanishing contributions to
individual diagrams in the presence of the hemisphere constraint. However, as explained in
[15], in the sum of all graphs these contributions cancel as a result of the KLN theorem, and
consequently the ultra-soft region does not contribute to the broadening.

We have stressed that the jet and soft functions relevant for broadening are not well
defined without additional regularization. Leaving this issue aside for the moment, the naive
factorization theorem for small broadening has the form

1

σ0

d2σ

dbL dbR
= H(Q2, µ)

∫
dbsL

∫
dbsR

∫
dd−2p⊥L

∫
dd−2p⊥R

× JL(bL − bsL, p
⊥
L , µ)JR(bR − bsR, p

⊥
R, µ)S(bsL, bsR,−p⊥L ,−p⊥R, µ) .

(3)

2



Factorization for jet broadening

✦ Laplace (                   ) and Fourier tranforms    
(                                           ):

✦ Jet and soft functions must contain a hidden 
(anomalous) Q dependence

L R

!nT

Figure 1: A typical event with small broadening consists of energetic collinear partons in each
hemisphere (blue lines) accompanied by soft radiation (red wiggly lines). The total transverse
momentum with respect to the thrust axis !nT vanishes in each hemisphere.

ingredients to the factorization formula are well defined, and the regulators can be removed
in the cross section, but the regularization induces Q-dependence which remains. However,
the regulator independence of the product of jet and soft functions gives a strong constraint
on the dependence of the individual functions on Q and implies that the dependence on the
momentum transfer must exponentiate [8, 7].

A complication, as compared to the case of qT resummation in Drell-Yan is that not only
collinear modes contribute, but also a semi-hard mode, whose momentum components scale
as pµ

s ∼ qT . In the following we will for simplicity refer to this momentum region as soft,
but it is important to distinguish it from the usual soft mode, whose components scale as
pµ

sh ∼ q2
T /Q, and which does not contribute to the broadening. The reason that the semi-

hard mode does not contribute to qT resummation in Drell-Yan is that the corresponding
loop integrals are all scaleless and can be omitted after proper regularization [7]. In contrast,
the integrals are not scaleless in the present case, since the radiation is restricted to one
of the hemispheres. An interesting question is whether additional momentum regions could
contribute at higher orders. We have studied the corresponding two loop integrals in QCD
and did not find additional regions. [ What exactly is our statement? ] For a full
factorization proof one would need to show that one has all the relevant momentum regions
to all orders in perturbation theory.

We have stressed that the jet and soft function relevant for broadening are not defined with-
out additional regularization. Leaving this issue aside for the moment, the naive factorization
theorem for small broadening has the form

1

σ0

d2σ

dbLdbR
= H(Q2, µ)

∫
dbs

L

∫
dbs

R

∫
dd−2p⊥L

∫
dd−2p⊥R

JL(bL − bs
L, p⊥L , µ)JR(bR − bs

R, p⊥R, µ)S(bs
L, bs

R,−p⊥L ,−p⊥R, µ) . (3)

The convolutions over bs
L,R arise because the physical broadening is the sum of the soft and

the collinear broadening. The definition of the thrust axis ensures that the total transverse
momentum vanishes in each hemisphere, so if the collinear partons have transverse momentum
p⊥L , the transverse momentum of the soft partons in the left hemisphere must be equal and
opposite.

The hard function H(Q2, µ) = |CV (−Q2 + iε, µ)|2 is just the quark vector form factor

2

p⊥soft ∼ p⊥collinear ∼ bL ∼ bR � Q

bL,R → τL,R

p⊥L,R → zL,R = 2|x⊥
L,R|/τL,R

Instead of working with the cross section in momentum space, it is more convenient to
discuss the Laplace-transformed cross section

d2σ

dτL dτR
=

∫ ∞

0

dbL e
−τLbL

∫ ∞

0

dbR e−τRbR
d2σ

dbL dbR
. (6)

It is furthermore beneficial to Fourier transform in the momenta p⊥L and p⊥R, after which the
factorization theorem (3) takes the form

1

σ0

d2σ

dτL dτR
= (2π)2(d−2) H(Q2, µ)

∫
dd−2x⊥

L

∫
dd−2x⊥

R

× J̃L(τL, x
⊥
L , µ) J̃R(τR, x

⊥
R, µ) S̃(τL, τR, x⊥

L , x
⊥
R, µ) ,

(7)

where J̃L, J̃R, and S̃ are the Laplace and Fourier-transformed jet and soft functions, e.g.

J̃L(τL, x
⊥
L , µ) =

∫ ∞

0

dbL e
−τLbL

∫
dd−2p⊥L
(2π)d−2

e−ip⊥
L
·x⊥

L JL(bL, p
⊥
L , µ) . (8)

Since by rotational invariance the jet functions only depend on the moduli |x⊥
L,R| of the

transverse-position vectors, we can integrate the soft function over the solid angles associ-
ated with these vectors. Introducing the dimensionless variables zL,R = 2|x⊥

L,R|/τL,R, the
naive factorization formula then takes the final form

1

σ0

d2σ

dτL dτR
= H(Q2, µ)

∫ ∞

0

dzL

∫ ∞

0

dzR J L(τL, zL, µ)J R(τR, zR, µ)S(τL, τR, zL, zR, µ) , (9)

with

S(τL, τR, zL, zR, µ) =
1

N 2

∫
dΩL

d−2

∫
dΩR

d−2 S̃(τL, τR, x⊥
L , x

⊥
R, µ) ,

J L,R(τ, z, µ) = N (2π)d−2 τ

2

(τz
2

)d−3
J̃L,R(τ, x

⊥, µ) .

(10)

The normalization factor

N =
Ωd−2

(2π)d−2
=

2

(4π)1−ε Γ(1− ε)
(11)

is chosen such that for a d = 4−2ε dimensional space-time the soft function S(0)
= 1 at lowest

order. For the lowest-order jet functions, we obtain

J (0)
L,R(τ, z) =

4ε Γ(2− 2ε)

Γ2(1− ε)

z1−2ε

(1 + z2)3/2−ε
. (12)

2 Evaluation of the jet and soft functions

As mentioned above, the Feynman diagrams contributing to the jet and soft functions are
not well defined individually in dimensional regularization. To evaluate them, we introduce
additional analytic regulators [20, 21] in the QCD diagrams contributing to the broadening.
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Anomalous factorization

✦ Have derived the Q dependence of product

using invariance under analytic regularization
✦ General result:

with:

The dependence on the analytic regulator has indeed canceled among the jet and soft functions,
and the anomalous logarithmic dependence on Q is now manifest. The above expression for
Σ(b) is valid for arbitrary values of ε. Expanding around ε = 0, and carefully treating the
resulting distributions in b, one finds the one-loop divergence

Σ(b) =
CFαs

4π
δ(b)

(
2

ε2
− 2

ε
ln

Q2

µ2
+

3

ε

)
+O(ε0) . (24)

This is equal to minus one half of the divergence of the bare hard function, so that the full
cross section (22) is indeed finite. In terms of renormalized objects, this result implies that
the convolution of the jet and soft functions has the same anomalous dimension as the hard
function, such that the cross section is renormalization-group (RG) invariant. We have used
expression (22) to compute the leading singular terms for small bT in the total broadening and
reproduce the one-loop result (2). Having performed these one-loop checks, we now turn to
the resummation of the logarithmically-enhanced corrections.

3 Resummation

The explicit results in the previous section show that the jet and soft functions contain diver-
gences in the analytic regulators. These divergences cancel in the product of these functions,
but they leave behind large logarithms of the momentum transfer over the broadening, which
should be resummed to all orders in order to get reliable predictions.

Interestingly, the one-loop divergences in the analytic regulators are multiplicative, such
that the product

P (Q2, τL, τR, zL, zR, µ) = J L(τL, zL, µ)J R(τR, zR, µ)S(τL, τR, zL, zR, µ) (25)

is finite even before the integrations over zL and zR in (9) are performed. To show that this
property holds to all orders in perturbation theory, we now study a modified event shape, in
which we consider the emission of two soft photons with momenta pγL and pγR in addition to
the QCD partons. We then determine the thrust axis using all final-state particles, including
the photons, but measure the broadening of the hadrons only. In the presence of photons in
the hemisphere, the total hadronic transverse momentum no longer adds up to zero, but will
be equal and opposite to the photon momentum.

The emission of soft photons is described by QED Wilson lines, analogously to the ones
appearing in the QCD soft function in (5). For our purposes, it is sufficient to treat the
photons classically and to consider the case where each hemisphere contains one photon with
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We can now evaluate (28) with the particular choice ν2 = Q/τ̄L, for which
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2(Qτ̄L) +

[
kL
1 (τL, zL, µ)− kR

1 (τR, zR, µ)
]
ln(Qτ̄L) + . . . , (31)

where the dots represent Q-independent terms. Finally, the fact that the result must be
left-right symmetric implies that kL

1 (τ, z, µ) + k2(µ) ln(µτ̄ ) = −kR
1 (τ, z, µ) − k2(µ) ln(µτ̄) ≡

−2FB(τ, z, µ), and hence the final answer can be written in the form

lnP =
k2(µ)

4
ln2

(
Q2 τ̄Lτ̄R

)
− FB(τL, zL, µ) ln

(
Q2τ̄ 2L

)
− FB(τR, zR, µ) ln

(
Q2τ̄ 2R

)

+ lnW (τL, τR, zL, zR, µ) ,

(32)

where the remainder function W is independent of Q and left-right symmetric.
We can gain further information by exploiting the fact that the cross section (27) and hence

the product H(Q2, µ)P (Q2, τL, τR, zL, zR, µ) must be RG invariant. From the RG equation
for the hard function [15]

d

d lnµ
H(Q2, µ) =

[
2Γcusp(αs) ln

Q2

µ2
+ 4γq(αs)

]
H(Q2, µ) , (33)
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d
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W (τL, τR, zL, zR, µ) .
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The first equation implies that k2 must be a constant. From the fact that at tree level this
constant vanishes it follows that k2 = 0 to all orders, since there would be no way to compensate
the scale dependence of the coupling αs(µ). Next, using our explicit one-loop results in (18)
and (21), we find that

FB(τ, z, µ) =
CFαs

π

[
ln(µτ̄) + ln

√
1 + z2 + 1

4

]
+O(α2

s) . (35)

We are now in the position to state the main result of this paper, which is the corrected,
all-order generalization of the naive factorization theorem (9) for the Laplace-transformed
double-differential cross section. Relation (32), combined with the fact that k2 = 0, implies
that the anomalous dependence of the jet and soft functions on Q exponentiates, and that the
cross section can be refactorized in the form
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×W (τL, τR, zL, zR, µ) .

(36)

This result contains two sources of Q dependence: one arising from the hard functionH(Q2, µ),
and an additional one stemming from the collinear anomaly. Once the RG equation (33) for
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✦ First all-order factorization formula:

✦ At NLL order, Mellin inversion can be done 
analytically: 

with:
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[
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This result contains two sources of Q dependence: one arising from the hard functionH(Q2, µ),
and an additional one stemming from the collinear anomaly. Once the RG equation (33) for

10

anomalous Q dependence

the hard function H(Q2, µ) is solved and the result is evaluated at a scale µ ∼ 1/τL ∼ 1/τR,
the above formula no longer contains any large logarithms in the perturbative series for the
functions FB and W .

It is convenient to factor out the leading-order jet functions from the remainder function
W by rewriting

W (τL, τR, zL, zR, µ) =
zL

(1 + z2L)
3/2

zR

(1 + z2R)
3/2

W (τL, τR, zL, zR, µ) , (37)

where W = 1 + O(αs). At NLL order, we can evaluate the cross section using the tree-level
result W = 1 and the one-loop expression for FB given in (35). This yields

1

σ0

d2σ

dτL dτR
= H(Q2, µ) (µτ̄L)

−ηL (µτ̄R)
−ηR I(ηL) I(ηR) , (38)

where

ηL,R =
CFαs(µ)

π
ln
(
Q2τ̄ 2L,R

)
, (39)

and

I(η) =

∫ ∞

0

dz
z

(1 + z2)3/2

(√
1 + z2 + 1

4

)−η

=
4η

1 + η 2F1(η, 1 + η, 2 + η,−1) . (40)

The function I(η) was called (2/λ)η in [12]. Finally, the relevant expression for the hard
function at this order reads [22]

lnH(Q, µ) =
4CF

β2
0

[
4π

αs(Q)

(
1− 1

r
− ln r

)
+

(
K − β1

β0

)
(1− r + ln r)

+
β1

2β0
ln2 r +

3β0

2
ln r

]
,

(41)

where r = αs(µ)/αs(Q), β0 and β1 are the first two expansion coefficients of the QCD β-
function, and K =

(
67
9 − π2

3

)
CA − 20

9 TFnf . At NLL order we can further approximate

ηL,R ≈ η ≡ CFαs(µ)

π
ln

Q2

µ2
, (42)

since ln(µτ̄L,R) is a small logarithm and counts as O(1). Then the cross section exhibits only
simple power dependence on τL,R, and the Mellin inversion from Laplace to bL,R space can be
performed analytically. We finally obtain

1

σ0

d2σ

dbL dbR
= H(Q2, µ)

e−2γEη

Γ2(η)

1

bL

(
bL
µ

)η 1

bR

(
bR
µ

)η

I2(η) . (43)

For the total broadening bT = bL + bR and the wide broadening bW = max(bL, bR), we find

1

σ0

dσ

dbT
= H(Q2, µ)

e−2γEη

Γ(2η)

1

bT

(
bT
µ

)2η

I2(η) ,

1

σ0

dσ

dbW
= H(Q2, µ)

2η e−2γEη

Γ2(1 + η)

1

bW

(
bW
µ

)2η

I2(η) .

(44)

11

the hard function H(Q2, µ) is solved and the result is evaluated at a scale µ ∼ 1/τL ∼ 1/τR,
the above formula no longer contains any large logarithms in the perturbative series for the
functions FB and W .

It is convenient to factor out the leading-order jet functions from the remainder function
W by rewriting

W (τL, τR, zL, zR, µ) =
zL

(1 + z2L)
3/2

zR

(1 + z2R)
3/2

W (τL, τR, zL, zR, µ) , (37)

where W = 1 + O(αs). At NLL order, we can evaluate the cross section using the tree-level
result W = 1 and the one-loop expression for FB given in (35). This yields

1

σ0

d2σ

dτL dτR
= H(Q2, µ) (µτ̄L)

−ηL (µτ̄R)
−ηR I(ηL) I(ηR) , (38)

where

ηL,R =
CFαs(µ)

π
ln
(
Q2τ̄ 2L,R

)
, (39)

and

I(η) =

∫ ∞

0

dz
z

(1 + z2)3/2

(√
1 + z2 + 1

4

)−η

=
4η

1 + η 2F1(η, 1 + η, 2 + η,−1) . (40)

The function I(η) was called (2/λ)η in [12]. Finally, the relevant expression for the hard
function at this order reads [22]

lnH(Q, µ) =
4CF

β2
0

[
4π

αs(Q)

(
1− 1

r
− ln r

)
+

(
K − β1

β0

)
(1− r + ln r)

+
β1

2β0
ln2 r +

3β0

2
ln r

]
,

(41)

where r = αs(µ)/αs(Q), β0 and β1 are the first two expansion coefficients of the QCD β-
function, and K =

(
67
9 − π2

3

)
CA − 20

9 TFnf . At NLL order we can further approximate

ηL,R ≈ η ≡ CFαs(µ)

π
ln

Q2

µ2
, (42)

since ln(µτ̄L,R) is a small logarithm and counts as O(1). Then the cross section exhibits only
simple power dependence on τL,R, and the Mellin inversion from Laplace to bL,R space can be
performed analytically. We finally obtain

1

σ0

d2σ

dbL dbR
= H(Q2, µ)

e−2γEη

Γ2(η)

1

bL

(
bL
µ

)η 1

bR

(
bR
µ

)η

I2(η) . (43)

For the total broadening bT = bL + bR and the wide broadening bW = max(bL, bR), we find

1

σ0

dσ

dbT
= H(Q2, µ)

e−2γEη

Γ(2η)

1

bT

(
bT
µ

)2η

I2(η) ,

1

σ0

dσ

dbW
= H(Q2, µ)

2η e−2γEη

Γ2(1 + η)

1

bW

(
bW
µ

)2η

I2(η) .

(44)
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the hard function H(Q2, µ) is solved and the result is evaluated at a scale µ ∼ 1/τL ∼ 1/τR,
the above formula no longer contains any large logarithms in the perturbative series for the
functions FB and W .

It is convenient to factor out the leading-order jet functions from the remainder function
W by rewriting

W (τL, τR, zL, zR, µ) =
zL

(1 + z2L)
3/2

zR

(1 + z2R)
3/2

W (τL, τR, zL, zR, µ) , (37)

where W = 1 + O(αs). At NLL order, we can evaluate the cross section using the tree-level
result W = 1 and the one-loop expression for FB given in (35). This yields

1

σ0

d2σ

dτL dτR
= H(Q2, µ) (µτ̄L)

−ηL (µτ̄R)
−ηR I(ηL) I(ηR) , (38)

where

ηL,R =
CFαs(µ)

π
ln
(
Q2τ̄ 2L,R

)
, (39)

and

I(η) =

∫ ∞

0

dz
z

(1 + z2)3/2

(√
1 + z2 + 1

4

)−η

=
4η

1 + η 2F1(η, 1 + η, 2 + η,−1) . (40)

The function I(η) was called (2/λ)η in [12]. Finally, the relevant expression for the hard
function at this order reads [22]

lnH(Q, µ) =
4CF

β2
0

[
4π

αs(Q)

(
1− 1

r
− ln r

)
+

(
K − β1

β0

)
(1− r + ln r)

+
β1

2β0
ln2 r +

3β0

2
ln r

]
,
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,

→ equivalent to:  Dokshitzer, Lucenti, Markesini, Salam 1998 
     [correcting Catani, Turnock, Webber 1992, who missed the I2(η) term]
→ I2(η) term also missed in:  Chiu, Jain, Neill, Rothstein 2011



Numerical results (preliminary)

✦ Comparison with ALEPH data (Q=91.2 GeV)
✦ Theory predictions at NLL order, still without 

matching to NLO

✦ Calculation of NNLL terms desired!



Extension to NNLL?

✦ Have operator definitions of jet and soft 
functions, e.g.:

✦ For NNLL accuracy we need one-loop jet and 
soft functions (latter is known) and two-loop 
anomaly function

✦ Appears doable and worthwhile

L R

!nT

Figure 1: A typical event with small broadening consists of energetic collinear partons in each
hemisphere (blue lines) accompanied by soft radiation (red wiggly lines). The total transverse
momentum with respect to the thrust axis !nT vanishes in each hemisphere.

The convolutions over bsL,R arise because the physical broadening is the sum of the collinear and
soft broadenings. The definition of the thrust axis ensures that the total transverse momentum
vanishes in each hemisphere, so if the left-moving collinear partons have transverse momentum
p⊥L , the transverse momentum of the soft partons in the left hemisphere must be equal and
opposite (see Figure 1).

The hard function H(Q2, µ) = |CV (−Q2 − iε, µ)|2 is the square of the quark vector form
factor, and is known to three-loop accuracy [17, 18]. The quark jet function for the left-moving
collinear partons is given by

π

2
(n/)αβ JL(b, p

⊥, µ) =
∑∫

X

(2π)d δ(n̄ · pX −Q) δd−2(p⊥X − p⊥)

× δ
(
b− 1

2

∑

i∈X

|p⊥i |
)
〈0|χα(0)|X〉 〈X|χ̄β(0)|0〉 ,

(4)

where nµ = (1,!nT ) is a light-like vector along the thrust axis, n̄µ = (1,−!nT ) is its conjugate,
and for simplicity we drop the subscript L on the variables of the jet function. The first
two δ-distributions ensure that the produced jet X has the desired energy and that its total
transverse momentum has a given value p⊥. In the absence of soft-collinear interactions, the
collinear SCET Lagrangian is equivalent to QCD and the collinear quark field χ(x) can be
identified with χ(x) = n/n̄/

4 W †(x)ψ(x), where ψ(x) is the QCD quark field and W (x) a straight
Wilson line along the n̄µ direction from −∞ to x (see e.g. [19] for more details). In our
computation of the jet function, we will use the standard QCD Lagrangian and Feynman
rules. The jet function JR for the right-moving collinear partons is obtained by exchanging
nµ ↔ n̄µ in the above formula. The soft function is obtained as

S(bL, bR, p⊥L , p⊥R, µ) =
∑∫

XL,XR

δd−2(p⊥XL
− p⊥L) δ

d−2(p⊥XR
− p⊥R)

× δ
(
bL − 1

2

∑

i∈XL

|p⊥L,i|
)
δ
(
bR − 1

2

∑

j∈XR

|p⊥R,j|
) ∣∣〈XLXR|S†

n(0)Sn̄(0)|0〉
∣∣2 .

(5)
Here Sn and Sn̄ are soft Wilson lines extending along the nµ and n̄µ directions. The final
states are split into left and right-moving particles, X = XL + XR, which contribute to the
respective broadenings.
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We can now evaluate (28) with the particular choice ν2 = Q/τ̄L, for which

lnP = k2(µ) ln
2(Qτ̄L) +

[
kL
1 (τL, zL, µ)− kR

1 (τR, zR, µ)
]
ln(Qτ̄L) + . . . , (31)

where the dots represent Q-independent terms. Finally, the fact that the result must be
left-right symmetric implies that kL

1 (τ, z, µ) + k2(µ) ln(µτ̄ ) = −kR
1 (τ, z, µ) − k2(µ) ln(µτ̄) ≡

−2FB(τ, z, µ), and hence the final answer can be written in the form

lnP =
k2(µ)

4
ln2

(
Q2 τ̄Lτ̄R

)
− FB(τL, zL, µ) ln

(
Q2τ̄ 2L

)
− FB(τR, zR, µ) ln

(
Q2τ̄ 2R

)

+ lnW (τL, τR, zL, zR, µ) ,

(32)

where the remainder function W is independent of Q and left-right symmetric.
We can gain further information by exploiting the fact that the cross section (27) and hence

the product H(Q2, µ)P (Q2, τL, τR, zL, zR, µ) must be RG invariant. From the RG equation
for the hard function [15]

d

d lnµ
H(Q2, µ) =

[
2Γcusp(αs) ln

Q2

µ2
+ 4γq(αs)

]
H(Q2, µ) , (33)

it then follows that

d

d lnµ
k2(µ) = 0 ,

d

d lnµ
FB(τ, z, µ) = Γcusp(αs) ,

d

d lnµ
W (τL, τR, zL, zR, µ) =

[
2Γcusp(αs) ln

(
µ2τ̄Lτ̄R

)
− 4γq(αs)

]
W (τL, τR, zL, zR, µ) .

(34)

The first equation implies that k2 must be a constant. From the fact that at tree level this
constant vanishes it follows that k2 = 0 to all orders, since there would be no way to compensate
the scale dependence of the coupling αs(µ). Next, using our explicit one-loop results in (18)
and (21), we find that

FB(τ, z, µ) =
CFαs

π

[
ln(µτ̄) + ln

√
1 + z2 + 1

4

]
+O(α2

s) . (35)

We are now in the position to state the main result of this paper, which is the corrected,
all-order generalization of the naive factorization theorem (9) for the Laplace-transformed
double-differential cross section. Relation (32), combined with the fact that k2 = 0, implies
that the anomalous dependence of the jet and soft functions on Q exponentiates, and that the
cross section can be refactorized in the form

1

σ0

d2σ

dτL dτR
= H(Q2, µ)

∫ ∞

0

dzL

∫ ∞

0

dzR
(
Q2τ̄ 2L

)−FB(τL,zL,µ) (Q2τ̄ 2R
)−FB(τR,zR,µ)

×W (τL, τR, zL, zR, µ) .

(36)

This result contains two sources of Q dependence: one arising from the hard functionH(Q2, µ),
and an additional one stemming from the collinear anomaly. Once the RG equation (33) for
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Conclusions

✦ Have derived all-order resummed expression for 
Drell-Yan cross section at small qT≪M 

✦ Naive factorization broken by collinear anomaly
✦ Correct SCET analysis reproduces CSS formula 

with a nontrivial relation between A and Γcusp; 
predicted A(3), last missing ingredient for NNLL

✦ Transverse PDFs do not exist as individual 
objects;*) only products of two PDFs are well 
defined, and carry an anomalous M dependence

*) They are gauge dependent in the standard treatment and
affected by (dim. unregularized) “rapidity divergences”



Conclusions

✦ Extending these methods, we have derived the 
first all-order resummation formula for jet 
broadening in e+e- annihilations

✦ Features non-trivial anomalous Q dependence 
due to anomaly

✦ NLL results agree with (the correct) known 
expressions in literature

✦ Calculations necessary to achieve NNLL 
resummation appear feasible

✦ Phenomenology in progress



BACKUP SLIDES:
Analytic regulators at work



Short-distance expansion for xT «ΛQCD

✦ Generalized PDFs at small transverse 
separation can be expanded in usual PDFs: 

✦ Expansion kernels are obtained from matching 
calculation

It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)

dσ

dM2

∣

∣

∣

∣

qT ≤QT

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥M2/s

dz1

z1

dz2

z2
(26)

×
[

min(Q2
T , z1z2s−M2)
∫

0

dq2
T Cqq̄→ij(z1, z2, q

2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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expressed as

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(16)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (17)

We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣

∣CV (−M2, µ)
∣

∣

2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

1

x2
T M2

)

.

(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(ξ/z, x

2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
T ) . (19)
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Figure 1: One-loop diagrams contributing to the matching coefficients Iq←q (top row) and
Iq←g (bottom row). The vertical lines indicate cut propagators.

refers to the running coupling evaluated at the scale µ, unless indicated otherwise. The
dimensional regulator is defined by d = 4− 2ε, and we omit O(ε) terms. Moreover, µ denotes
the renormalization scale defined in the MS scheme. The remaining two diagrams turn out
to be ill-defined in dimensional regularization due to light-cone singularities. To give meaning
to the corresponding loop integrals requires introducing additional regulators. The simplest
possibility is to employ analytic regularization, as is common in the context of asymptotic
expansions [19, 20]. In the context of SCET this method has been used in [15, 44]. One starts
by reconsidering the QCD diagrams contributing to the process and raises all propagators
through which the external hard-collinear momentum p flows to a fractional power,

1

−(p − k)2 − iε
→

ν2α
1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and
associated scale ν2. For QCD diagrams, such as the first graph in Figure 2, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place also the SCET diagrams in the (anti-)hard-
collinear sectors are now also well-defined. The diagrams in each sector involve divergences
in the analytical regulator, which cancel in the sum of all contributions. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 2, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 2. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (31)

As seen in Figure 2, the regulator α plays a double role: it regularizes the fermion propagators
in hard-collinear diagrams and the Wilson lines in anti-hard-collinear diagrams. Both classes
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Iq←q :

Iq←g :



Short-distance expansion for xT «ΛQCD

✦ Collinear loops are not defined and require a 
regulator beyond dimensional regularization

✦ Most economic possibility is to use analytic 
regularization scheme:

✦ Adaption to SCET collinear propagators: 
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Figure 2: Matching of an analytically-regularized QCD graph onto SCET diagrams.

of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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Figure 1: One-loop diagrams contributing to the matching coefficients Iq←q (top row) and
Iq←g (bottom row). The vertical lines indicate cut propagators.

refers to the running coupling evaluated at the scale µ, unless indicated otherwise. The
dimensional regulator is defined by d = 4− 2ε, and we omit O(ε) terms. Moreover, µ denotes
the renormalization scale defined in the MS scheme. The remaining two diagrams turn out
to be ill-defined in dimensional regularization due to light-cone singularities. To give meaning
to the corresponding loop integrals requires introducing additional regulators. The simplest
possibility is to employ analytic regularization, as is common in the context of asymptotic
expansions [19, 20]. In the context of SCET this method has been used in [15, 44]. One starts
by reconsidering the QCD diagrams contributing to the process and raises all propagators
through which the external hard-collinear momentum p flows to a fractional power,

1

−(p − k)2 − iε
→

ν2α
1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and
associated scale ν2. For QCD diagrams, such as the first graph in Figure 2, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place also the SCET diagrams in the (anti-)hard-
collinear sectors are now also well-defined. The diagrams in each sector involve divergences
in the analytical regulator, which cancel in the sum of all contributions. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 2, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 2. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (31)

As seen in Figure 2, the regulator α plays a double role: it regularizes the fermion propagators
in hard-collinear diagrams and the Wilson lines in anti-hard-collinear diagrams. Both classes
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✦ Introducing analogous regulator β in anti-
collinear sector, we find:

✦ The product of two such functions is regulator 
independent:

-1
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain
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6
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+
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams
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∣

∣

α reg.
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2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
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CF αs

2π
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1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)

dσ

dM2

∣

∣

∣

∣

qT ≤QT

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥M2/s

dz1

z1

dz2

z2
(26)

×
[

min(Q2
T , z1z2s−M2)
∫

0

dq2
T Cqq̄→ij(z1, z2, q

2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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✦ From previous result we read off:

✦ Two-loop result for                                      :

-1

Next we calculate the kernel Iq←g at one-loop order. This function vanishes at tree level,
and at one-loop order it follows from the evaluation of a single diagram shown in the second
row of Figure 1. There is no need for analytic regularization in this case, and after MS
subtractions we find

Iq←g(z, x
2
T , µ) = −

TF αs

2π

{

L⊥

[

z2 + (1 − z)2
]

− 2z(1 − z)
}

+ O(α2
s) . (36)

From (35) and (36) we can extract the one-loop expressions for the renormalized function
Fqq̄ and the renormalized kernels Ii←j relevant for Drell-Yan production. We obtain

Fqq̄(L⊥, αs) =
CF αs

π
L⊥ + O(α2

s) , (37)

and

Iq←q(z, L⊥, αs) = δ(1 − z)

[

1 +
CFαs

4π

(

L2
⊥ + 3L⊥ −

π2

6

)]

−
CFαs

2π

[

L⊥Pq←q(z) − (1 − z)
]

+ O(α2
s) ,

Iq←g(z, L⊥, αs) = −
TF αs

2π

[

L⊥Pq←g(z) − 2z(1 − z)
]

+ O(α2
s) ,

(38)

with L⊥ as defined in (29). The kernel Iq̄→q̄ is given by the same expression as Iq→q, and
Iq̄→g has the same form as Iq→g. Note that, with a slight abuse of notation, we have changed
the arguments x2

T and µ in Fqq̄ and the kernel functions to L⊥ and αs, as this will be more
convenient from now on. In the above expressions

Pq←q(z) =

(

1 + z2

1 − z

)

+

, Pq←g(z) = z2 + (1 − z)2 (39)

are the one-loop Altarelli-Parisi splitting functions, defined as

Pq←q(x, µ) =
CFαs

π
Pq←q(x) + O(α2

s) , Pq←g(x, µ) =
TF αs

π
Pq←g(x) + O(α2

s) . (40)

It is straightforward to check that our one-loop results (35) and (36) satisfy the general evo-
lution equations (21).

3.2 All-order dependence on the hard momentum transfer

The appearance of a logarithm of the large momentum transfer q2 in the matching condition
(35) appears strange at first sight, since it arises from the evaluation of hard-collinear and anti-
hard-collinear loop graphs in the effective theory, in which these two sectors are decoupled from
each other at the Lagrangian level. Naively we would thus expect a dependence on the scale
xT only. For µ of order a typical hard-collinear scale the resulting logarithm is parametrically
large, so that αs ln(q2/µ2) ∼ 1 in RG power counting. The question then arises if higher
powers of such logarithms appear in higher orders of perturbation theory, and if this is the
case, how these logarithms can be resummed to all orders.
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]

+ O(α2
s) ,

(38)

with L⊥ as defined in (29). The kernel Iq̄→q̄ is given by the same expression as Iq→q, and
Iq̄→g has the same form as Iq→g. Note that, with a slight abuse of notation, we have changed
the arguments x2

T and µ in Fqq̄ and the kernel functions to L⊥ and αs, as this will be more
convenient from now on. In the above expressions

Pq←q(z) =

(

1 + z2

1 − z

)

+

, Pq←g(z) = z2 + (1 − z)2 (39)

are the one-loop Altarelli-Parisi splitting functions, defined as

Pq←q(x, µ) =
CFαs

π
Pq←q(x) + O(α2

s) , Pq←g(x, µ) =
TF αs

π
Pq←g(x) + O(α2

s) . (40)

It is straightforward to check that our one-loop results (35) and (36) satisfy the general evo-
lution equations (21).

3.2 All-order dependence on the hard momentum transfer

The appearance of a logarithm of the large momentum transfer q2 in the matching condition
(35) appears strange at first sight, since it arises from the evaluation of hard-collinear and anti-
hard-collinear loop graphs in the effective theory, in which these two sectors are decoupled from
each other at the Lagrangian level. Naively we would thus expect a dependence on the scale
xT only. For µ of order a typical hard-collinear scale the resulting logarithm is parametrically
large, so that αs ln(q2/µ2) ∼ 1 in RG power counting. The question then arises if higher
powers of such logarithms appear in higher orders of perturbation theory, and if this is the
case, how these logarithms can be resummed to all orders.
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Altarelli-Parisi splitting functions

These conditions enforce that Hi and Hj are linear in their last two arguments with coefficients
that are independent of ξ1 and ξ2, and hence we are free to write

lnBi/N1
Bj/N2

= Hi

(

ξ2, L⊥, αs(µ)
)

+ Hj

(

ξ2, L⊥, αs(µ)
)

− Fij

(

L⊥, αs(µ)
)

(

ln
q2

µ2
+ L⊥

)

. (43)

We have used the freedom that the decomposition is unique up to a function of L⊥ to make the
coefficient of Fqq̄ scale independent. With the identification Hi = lnBi/N1

and Hj = ln Bj/N2

this proves relation (13), where we have considered the special case i = q, j = q̄.
Let us now collect what can be said about the function Fqq̄ based on general principles.

Generalizing our one-loop result to higher orders, we can write the perturbative expansion of
Fqq̄ in the form

Fqq̄(L⊥, αs) =
∞

∑

n=1

dq
n(L⊥)

(αs

4π

)n
, (44)

where dq
1(L⊥) = 4CF L⊥. The first evolution equation in (14) then implies the recursion

relation

dq
n
′(L⊥) = ΓF

n−1 +
n−1
∑

m=1

m βn−1−m dq
m(L⊥) , n ≥ 1 , (45)

where the prime denotes a derivative with respect to L⊥, and as usual we have expanded the
cusp anomalous dimension and β(αs) = µ dαs/dµ as

ΓF
cusp(αs) =

∞
∑

n=1

ΓF
n−1

(αs

4π

)n

, β(αs) = −2αs

∞
∑

n=1

βn−1

(αs

4π

)n

. (46)

For the first two expansion coefficients, we obtain

dq
1(L⊥) = ΓF

0 L⊥ + dq
1 , dq

2(L⊥) =
ΓF

0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
2 , (47)

where dq
n ≡ dq

n(0) with dq
1 = 0. The expansion of the corresponding function Fgg for Higgs

production can be written as in (44) but with coefficients dg
n, which obey analogous equations

in which ΓF
cusp is replaced by ΓA

cusp. We will later discuss how the two-loop coefficients dq,g
2

can be extracted from existing calculations of higher-order corrections to Drell-Yan and Higgs
production cross sections derived in fixed-order perturbation theory [6, 7]. The result is

dq
2

CF
=

dg
2

CA
= CA

(

808

27
− 28ζ3

)

−
224

27
TFnf . (48)

These coefficients contain only maximally non-abelian color structures, and it is natural to
conjecture that also in higher orders they are constrained by the non-abelian exponentiation
theorem [37, 38], as is the case for the cusp anomalous dimension. This would imply that the
Casimir scaling relation dq

n/CF = dg
n/CA continues to hold at least to three-loop order. Since

the cusp anomalous dimension obeys the same relation, Casimir scaling to three-loop order
holds for the entire Fqq̄ and Fgg functions, as shown in (15). Note that there are arguments
indicating that for the cusp anomalous dimension Casimir scaling should hold at four loops
and perhaps even to all orders of perturbation theory [36].
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