Applications of the Collinear

Aromaly:

qT Résummation and Jet Broadening

in memory of Uli Bauer

Based on:

+ T. Becher and M. Neubert:

Drell-Yan production at small qt, transverse parton distributions and the collinear anomaly arXiv: 1007.4005 (to appear in EPJC)

* T. Becher, G. Bell and M. Neubert:

Factorization and resummation for jet broadening arXiv: 1104.4108 (submitted to PLB)

Drell-Yan processes

hadron H_{1}
hadron H_{2}

* Used for measurement of W-boson mass and width, PDF determinations, Higgs discovery, background to New Physics searches
* Region of small $\mathrm{q}_{\mathrm{T}}<\mathrm{M}$ particularly relevant to extraction of W mass and reduction of background to Higgs searches

Z-boson production at Tevatron ...

... and at LHC

Drell-Yan processes

+ Classical two-scale problem ($\mathrm{q}^{2} \ll \mathrm{M}$), for which large Sudakov logarithms $\sim\left(\alpha_{s} \ln ^{2} M / q_{T}\right)^{n}$ arise that must be resummed

Drell-Yan processes

* Transverse momentum of Drell-Yan object (W, Z, H) due to initial-state radiation (ISR) off collinear partons
* Simple example of beam jets described by beam functions in SCET Stewart, Tackmann, Waalewin 2009
* Yet many surprises and subtleties arise, which may be relevant also for other applications of beam functions in jet processes

Jet broadening in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

* Broadening measures transverse momenta relative to thrust axis:

$$
b_{L}=\frac{1}{2} \sum_{i}\left|\vec{p}_{i}^{-}\right|=\frac{1}{2} \sum_{i}\left|\vec{p}_{i} \times \vec{n}_{T}\right|
$$

* Total and wide broadening defined as:

$$
b_{T}=b_{L}+b_{R}: \quad b_{W}=\max \left(b_{L}, b_{R}\right)
$$

Jet broadening in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

* Important event shape, relevant for precision determination of α_{s}
* Cross section is largest for $b_{L, R} \ll Q=\sqrt{ }$ s, where resummation of Sudakov logarithms is required for reliable prediction
* But so far no all-order factorization theorem existed for jet broadening

Collinear Anomaly

Soft-collinear factorization in SCET

* Common to Drell-Yan at small qt and jet broadening at small $b_{L, R}$ is that observables select final-state partons with small transverse momenta $p_{i}^{\perp}=\lambda M ; \quad \lambda \ll 1$
* Partons can be (anti-)collinear, aligned with initial- or final-state jets, or soft
* Describe these in soft-collinear effective theory (SCET) in terms of (anti-) collinear and soft quark and gluon fields

Soft-collinear factorization in SCET

* Relevant effective theory SCET $_{\text {II }}$ contains collinear, anti-collinear, and soft partons with momenta:

$$
\begin{aligned}
& p_{i}^{c} \sim\left(\lambda^{2}, 1, \lambda\right) M \\
& p_{i}^{\bar{c}} \sim\left(1, \lambda^{2}, \lambda\right) M \\
& p_{i}^{s} \sim(\lambda, \lambda, \lambda) M
\end{aligned}
$$

+ Classical effective Lagrangian contains no interactions between different modes, implying a complete factorization:

$$
\mathcal{L}_{\mathrm{SCET}_{\mathrm{II}}}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s}
$$

Soft-collinear factorization in SCET

+ If this was true, then:

$$
d \sigma \sim H(Q, \mu) \phi_{c}\left(q_{T}, \mu\right) \phi_{\bar{c}}\left(q_{T}, \mu\right) S\left(q_{T}, \mu\right)
$$

* But RGE for hard function shows that this cannot be correct:

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

* RG invariance of cross section implies that soft-collinear part $\phi_{c} \phi_{\bar{c}} S$ must carry some hidden (anomalous) dependence on Q
\rightarrow not observed in previous SCET papers on qT resummation:
Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

Soft-collinear factorization in SCET

+ At classical level, the $\mathrm{SCET}_{\text {II }}$ Lagrangian

$$
\mathcal{L}_{\mathrm{SCET}_{\mathrm{II}}}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s}
$$

exhibits certain symmetries, e.g.:

+ \mathcal{L}_{c} is invariant under rescalings $\bar{p} \rightarrow \bar{\lambda} \bar{p}$ of anti-collinear jet momentum
$+\mathcal{L}_{\bar{c}}$ is invariant under rescalings $p \rightarrow \lambda p$ of collinear jet momentum
+ This symmetry is anomalous, not preserved by regularization (broken to subgroup $\lambda \bar{\lambda}=1$)

Soft-collinear factorization in SCET

+ Not an anomaly of QCD, but of the effective theory relevant to QCD factorization
+ In a different context ($\mathrm{B} \rightarrow \pi$ form factor), Beneke called this the "factorization anomaly"

Dubbal lectures 2005

+ Fact that additional Q dependence arises from a quantum anomaly gives rise to stringent constraints, which imply that it exponentiates; e.g. for Drell-Yan production at small qт:

$$
\left(Q^{2} x_{T}^{2}\right)^{-F\left(x_{T}^{2}, \mu\right)}=\exp \left[-F\left(x_{T}^{2}, \mu\right) \ln \left(Q^{2} x_{T}^{2}\right)\right]
$$

Soft-collinear factorization in SCET

+ There exist many ways to regularize the loop graphs giving rise to the anomaly, but dimensional regularization alone is not sufficient
+ Here we use analytic regularization Smirnov 1993
+ Other schemes have been proposed, e.g. the "rapidity RG", but their consistency has not yet been demonstrated beyond 1-loop order Chiu, Jain, Neill, Rothstein 2011; see also: Manohar, Stewart 2006
+ For any consistent scheme, final results will be independent of the regularization procedure

Factorization and Resummation for the Drell-Yan Cross Section at small qT

(T. Becher, MN, arXiv:1007.4005)

Drell-Yan cross section in SCET

* Naive soft-collinear factorization:
jet function

$$
J\left(M_{1}^{2}, \mu\right)
$$

* In our regularization scheme the soft contribution in this particular case gives rise to scaleless integrals that vanish

Drell-Yan cross section in SCET

Side remark:

+ Absence of soft contributions $\mathrm{k} \sim(\lambda, \lambda, \lambda)$ follows after proper multipole expansion using that $\mathrm{x} \sim$ ($1,1, \lambda^{-1}$), which implies:

$$
(p-k) \cdot x=p \cdot x-k_{\perp} \cdot x_{\perp}+\mathcal{O}(\lambda)
$$

+ Relevant loops integrals such as

$$
\int d^{d} k \frac{1}{(n \cdot k-i \epsilon)^{1+\alpha}} \frac{1}{(\bar{n} \cdot k-i \epsilon)^{1+\beta}} \delta\left(k^{2}\right) \theta\left(k^{0}\right) e^{i p \cdot x-i k_{\perp} \cdot x_{\perp}}
$$

are scaleless and vanish in dimensional regularization

Drell-Yan cross section in SCET

* Remaining naive factorization formula:

"hard function" \otimes "transverse PDF" \otimes "transverse PDF"
* Transverse PDF:
$\mathcal{B}_{q / N}\left(z, x_{T}^{2}, \mu\right)=\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p}\langle N(p)| \bar{\chi}\left(t \bar{n}+x_{\perp}\right) \frac{\hbar}{2} \chi(0)|N(p)\rangle$
This spells trouble: well known that transverse PDF not well defined without additional regulator

Drell-Yan cross section in SCET

* Remaining naive factorization formula:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s}\left|H\left(M^{2}, \mu\right)\right| \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \\
& \times \sum_{q} e_{q}^{2}\left[\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{M^{2}}\right)
\end{aligned}
$$

where: $\quad \xi_{1}=\sqrt{\tau} e^{y}, \quad \xi_{2}=\sqrt{\tau} e^{-y}, \quad$ with $\quad \tau=\frac{m_{\perp}^{2}}{s}=\frac{M^{2}+q_{T}^{2}}{s}$

* Resummation would then be accomplished by solving the RGE for the hard function:

$$
\frac{d}{d \ln \mu} H\left(M^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right) \ln \frac{M^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(M^{2}, \mu\right)
$$

\rightarrow see SCET papers by: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

Drell-Yan cross section in SCET

* Remaining naive factorization formula:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s}\left|H\left(M^{2}, \mu\right)\right| \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} x_{\perp}} \\
& \times \sum_{q} e_{q}^{2}\left[\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{M^{2}}\right)
\end{aligned}
$$

where: $\quad \xi_{1}=\sqrt{\tau} e^{y}, \quad \xi_{2}=\sqrt{\tau} e^{-y}, \quad$ with $\quad \tau=\frac{m_{\perp}^{2}}{s}=\frac{M^{2}+q_{T}^{2}}{s}$

* Resummation would then be accomplished by solving the RGE for the hard f

\rightarrow see SCET papers by: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

Collinear anomaly

* RG invariance of the cross section requires that the product $\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)$ must contain a hidden M dependence
* Analyzing the relevant diagrams, we find that an additional regulator is needed to make transverse PDFs well defined; in the product of two PDFs this regulator can be removed, but an anomalous M dependence remains:

$$
\begin{aligned}
{\left[\mathcal{B}_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{M^{2}} } & =\left(\frac{x_{T}^{2} M^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)} B_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right) \\
\text { with: } \quad \frac{d F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)}{d \ln \mu} & =2 \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)
\end{aligned}
$$

Collinear anomaly

* Regular soft-collinear factorization:

Collinear anomaly

* Anomalous soft-collinear factorization:

Transverse PDFs

"What God has joined together, let no man separate..."

* The "operator definition of TMP PDFs is quite problematic [...] and is nowadays under active investigation" Cherednikov, Stefanis 2009
for a review, see: Collins 2003, 2008
for an elegant recent definition, see: Collins 2011
+ Our result:
Regularization of individual transverse PDFs is delicate, but the product of two transverse PDFs is well defined and has a specific dependence on hard momentum transfer M^{2}

Comparison with the CSS formula

+ Classic result from Collins-Soper-Sterman: 1985

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y} & =\frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \sum_{q} e_{q}^{2} \sum_{i=q, g} \sum_{j=\bar{q}, g} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}} \\
& \times \exp \left\{-\int_{\mu_{b}^{2}}^{M^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{M^{2}}{\bar{\mu}^{2}} A\left(\alpha_{s}(\bar{\mu})\right)+B\left(\alpha_{s}(\bar{\mu})\right)\right]\right\} \\
& \times\left[\overline{\mathcal{P}}_{q / N_{1}}\left(\xi_{1}, x_{T}, \mu_{b}\right) \overline{\mathcal{P}}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}, \mu_{b}\right)+(q, i \leftrightarrow \bar{q}, j)\right]
\end{aligned}
$$

Disadvantages compared with our approach:

+ $\bar{\mu}$ integral hits the Landau pole of running coupling and requires PDFs at arbitrarily low scales
+ practical calculations employ an xт-space cutoff, which introduces some ad hoc model dependence

Comparison with the CSS formula

* Classic result from Collins-Soper-Sterman: 1985

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y} & =\frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \sum_{q} e_{q}^{2} \sum_{i=q, g} \sum_{j=\bar{q}, g} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}} \\
& \times \exp \left\{-\int_{\mu_{b}^{2}}^{M^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{M^{2}}{\bar{\mu}^{2}} A\left(\alpha_{s}(\bar{\mu})\right)+B\left(\alpha_{s}(\bar{\mu})\right)\right]\right\} \\
& \times\left[\overline{\mathcal{P}}_{q / N_{1}}\left(\xi_{1}, x_{T}, \mu_{b}\right) \overline{\mathcal{P}}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}, \mu_{b}\right)+(q, i \leftrightarrow \bar{q}, j)\right]
\end{aligned}
$$

* All-order equivalence to our result, if:

$$
\begin{array}{ll}
A\left(\alpha_{s}\right)=\Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)-\frac{\beta\left(\alpha_{s}\right)}{2} \frac{d g_{1}\left(\alpha_{s}\right)}{d \alpha_{s}}, & g_{1}\left(\alpha_{s}\right)=F\left(0, \alpha_{s}\right) \\
B\left(\alpha_{s}\right)=2 \gamma^{q}\left(\alpha_{s}\right)+g_{1}\left(\alpha_{s}\right)-\frac{\beta\left(\alpha_{s}\right)}{2} \frac{d g_{2}\left(\alpha_{s}\right)}{d \alpha_{s}}, & g_{2}\left(\alpha_{s}\right)=\ln H\left(-\mu^{2}, \mu\right) \\
\mathrm{V}\left(\xi, x_{T}\right)=H\left(-\mu_{b}^{2}, \mu_{b}\right) B_{i / N}\left(\xi, x_{T}^{2}, \mu_{b}\right) & \text { anomaly contributions }
\end{array}
$$

Comparison with the CSS formula

+ Only linear dependence on $\log (\mathrm{Q})$ in exponent can be made consistent with CSS formula!
+ Non-trivial soft function absent in CSS, too!
+ Anomaly implies a non-trivial contribution to A, such that $A\left(\alpha_{s}\right) \neq \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)$ in this case!
\rightarrow missed by all previous SCET analyses:
Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009
+ Can predict unknown 3-loop coefficient of A based on known 2-loop result for B: $\Gamma_{2}^{F}=538.2$ while $A^{(3)}=-930.8 \rightarrow$ important effect

Simplification for $\mathrm{x}_{\mathrm{T}}<\Lambda^{-1}(\operatorname{large} \mathrm{q} T)$

+ Can perform operator product expansion: $\mathcal{B}_{i / N}\left(\xi, x_{T}^{2}, \mu\right)=\sum_{j} \int_{\xi}^{1} \frac{1}{z} \frac{z_{i}}{z} \mathcal{I}_{i-j}\left(z, x_{T}^{2}, \mu\right) \phi_{j / N}(\xi / z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right)$
+ Only the product of two $\mathcal{I}_{i-j}\left(z, x_{T}^{2}, \mu\right)$ functions is well defined due to the anomaly:
+ Using analytic regulators in the calculation of these functions is very economical, since it does not introduce any new scales

Simplification for $\mathrm{x}_{\mathrm{T}}<\Lambda^{-1}$ (large $\left.\mathrm{q} T\right)$

* Factorized cross section at small qT:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \sum_{q} e_{q}^{2} \sum_{i=q, q j} \sum_{j=q_{q}} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}} \\
& \left.\left.\times\left[C_{q \bar{q}-i j} \frac{\xi_{1}}{\xi_{1}} \frac{\xi_{2}, q_{2}}{z_{2}}, M_{T}^{2}, \mu\right) \phi_{q_{i / N_{1}}\left(z_{1}, \mu\right)}\right) \phi_{j / N_{2}}\left(z_{2}, \mu\right)+(q, i \leftrightarrow \bar{q}, j)\right]
\end{aligned}
$$

+ Hard-scattering kernels:

$$
\begin{aligned}
C_{q \bar{q}-i j}\left(z_{1}, z_{2}, q_{T}^{2}, M^{2}, \mu\right)= & H\left(M^{2}, \mu\right) \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp}, x_{\perp}}\left(\frac{x_{T}^{2} M^{2}}{4 e^{-2 \tau_{\mathbb{E}}}}\right)^{-F_{q q}\left(\tau_{T}^{2}, \mu\right)} \\
& \times I_{q-i}\left(z_{1}, x_{T}^{2}, \mu\right) I_{\bar{q}-j}\left(z_{2}, x_{T}^{2}, \mu\right)
\end{aligned}
$$

* Two sources of M dependence: hard function and collinear anomaly

Numerical results (preliminary)

Factorization and Resummation for Jet Broadening in $\mathrm{e}^{+} \mathrm{e}^{-}$Annihilation
(T. Becher, G. Bell, MN, arXiv:1104.4108)

Factorization for jet broadening

Problem that individual jet and soft functions are not well defined without additional regularization also arises in other factorization theorems

+ electroweak Sudakov resummation (and any other process at high Q^{2} with small but nonzero masses)
* other observables sensitive to transverse momenta, such as jet broadening Becher, Bell, MN 2011

Factorization for jet broadening

$$
p_{\text {soft }}^{\perp} \sim p_{\text {collinear }}^{\perp} \sim b_{L} \sim b_{R} \ll Q
$$

* Naive factorization theorem for broadening, (jets recoil against soft radiation):

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \times\left(\mathcal { J } _ { L } (b _ { L } - b _ { L } ^ { s } , p _ { L } ^ { \perp } , \mu) \left(\mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)\right.\right.
\end{aligned}
$$

* Non-trivial soft function arises in this case, since radiation is restricted to hemispheres

Factorization for jet broadening

$$
p_{\text {soft }}^{\perp} \sim p_{\text {collinear }}^{\perp} \sim b_{L} \sim b_{R} \ll Q
$$

+ Laplace ($b_{L, R} \rightarrow \tau_{L, R}$) and Fourier tranforms $\left(p_{L, R}^{\perp} \rightarrow z_{L, R}=2\left|x_{L, R}^{\perp}\right| / \tau_{L, R}\right):$
$\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}=H\left(Q^{2}, \mu\right) \int_{0}^{\infty} d z_{L} \int_{0}^{\infty} d z_{R}\left(\mathcal{J}_{L}\left(\tau_{L}, z_{L}, \mu\right) \overparen{\mathcal{J}_{R}\left(\tau_{R}, z_{R}, \mu\right)}\left(\widehat{\mathcal{S}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)}\right.\right.$
* Jet and soft functions must contain a hidden (anomalous) Q dependence

Anomalous factorization

* Have derived the Q dependence of product $P\left(Q^{2}, \tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)=\overline{\mathcal{J}_{L}\left(\tau_{L}, z_{L}, \mu\right)}\left(\overline{\mathcal{J}_{R}}\left(\tau_{R}, z_{R}, \mu\right)\left(\overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)\right.\right.$ using invariance under analytic regularization
* General result: double logarithm!

$$
\begin{aligned}
\ln P= & \frac{k_{2}(\mu)}{4} \ln ^{2}\left(Q^{2} \bar{\tau}_{L} \bar{\tau}_{R}\right)-F_{B}\left(\tau_{L}, z_{L}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{L}^{2}\right)-F_{B}\left(\tau_{R}, z_{R}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{R}^{2}\right) \\
& +\ln W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
\end{aligned}
$$

with:

$$
\frac{d}{d \ln \mu} k_{2}(\mu)=0, \quad \frac{d}{d \ln \mu} F_{B}(\tau, z, \mu)=\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)
$$

Anomalous factorization

* General result: $\ln P=\frac{k_{2}(\mu)}{4} \ln ^{2}\left(Q^{2} \bar{\tau}_{L} \bar{\tau}_{R}\right)-F_{B}\left(\tau_{L}, z_{L}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{L}^{2}\right)-F_{B}\left(\tau_{R}, z_{R}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{R}^{2}\right)$

$$
+\ln W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

with:

$$
\frac{d}{d \ln \mu} k_{2}(\mu)=0, \quad \frac{d}{d \ln \mu} F_{B}(\tau, z, \mu)=\Gamma_{\text {cusp }}\left(\alpha_{s}\right)
$$

* Perturbative analysis reveals that $k_{2}=0$ (to all orders), and:

$$
F_{B}(\tau, z, \mu)=\frac{C_{F} \alpha_{s}}{\pi}\left[\ln (\mu \bar{\tau})+\ln \frac{\sqrt{1+z^{2}}+1}{4}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

Anomalous factorization

* First all-order factorization formula:

$$
\begin{aligned}
& \frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}= H\left(Q^{2}, \mu\right) \int_{0}^{\infty} d z_{L} \int_{0}^{\infty} d z_{R}\left(Q^{2} \bar{\tau}_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}, \mu\right)}\left(Q^{2} \tau_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}, \mu\right)} \\
& \times W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right) \\
& \text { At NLL order, Mellin inversion can be done } \\
& \text { analytically: }
\end{aligned}
$$

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d b_{T}}=H\left(Q^{2}, \mu\right) \frac{e^{-2 \gamma_{E} \eta}}{\Gamma(2 \eta)} \frac{1}{b_{T}}\left(\frac{b_{T}}{\mu}\right)^{2 \eta} I^{2}(\eta)
$$

with:

$$
I(\eta)=\int_{0}^{\infty} d z \frac{z}{\left(1+z^{2}\right)^{3 / 2}}\left(\frac{\sqrt{1+z^{2}}+1}{4}\right)^{-\eta}, \quad \eta \equiv \frac{C_{F} \alpha_{s}(\mu)}{\pi} \ln \frac{Q^{2}}{\mu^{2}}
$$

\rightarrow equivalent to: Dokshitzer, Lucenti, Markesini, Salam 1998
[correcting Catani, Turnock, Webber 1992, who missed the $I^{2}(\eta)$ term]
$\rightarrow I^{2}(\eta)$ term also missed in: Chiu, Jain, Neill, Rothstein 2011

Numerical results (preliminary)

* Comparison with ALEPH data ($\mathrm{Q}=91.2 \mathrm{GeV}$)
* Theory predictions at NLL order, still without matching to NLO

* Calculation of NNLL terms desired!

Extension to NNLL?

* Have operator definitions of jet and soft functions, e.g.:

$$
\begin{aligned}
\frac{\pi}{2}(\not h)_{\alpha \beta} \mathcal{J}_{L}\left(b, p^{\perp}, \mu\right)= & \sum_{X}(2 \pi)^{d} \delta\left(\bar{n} \cdot p_{X}-Q\right) \delta^{d-2}\left(p_{X}^{\perp}-p^{\perp}\right) \\
& \times \delta\left(b-\frac{1}{2} \sum_{i \in X}\left|p_{i}^{\perp}\right|\right)\langle 0| \chi_{\alpha}(0)|X\rangle\langle X| \bar{\chi}_{\beta}(0)|0\rangle
\end{aligned}
$$

* For NNLL accuracy we need one-loop jet and soft functions (latter is known) and two-loop anomaly function $F_{B}(\tau, z, \mu)$
* Appears doable and worthwhile

Conclusions

* Have derived all-order resummed expression for Drell-Yan cross section at small $\mathrm{qT}^{\ll} \mathrm{M}$
* Naive factorization broken by collinear anomaly
* Correct SCET analysis reproduces CSS formula with a nontrivial relation between A and $\Gamma_{\text {cusp }}$; predicted $\mathrm{A}^{(3)}$, last missing ingredient for NNLL
* Transverse PDFs do not exist as individual objects;") only products of two PDFs are well defined, and carry an anomalous M dependence
*) They are gauge dependent in the standard treatment and affected by (dim. unregularized) "rapidity divergences"

Conclusions

* Extending these methods, we have derived the first all-order resummation formula for jet broadening in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations
* Features non-trivial anomalous Q dependence due to anomaly
* NLL results agree with (the correct) known expressions in literature
* Calculations necessary to achieve NNLL resummation appear feasible
* Phenomenology in progress

BACKUP SLIDES: Analytic regulators at work

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

+ Generalized PDFs at small transverse separation can be expanded in usual PDFs:

$$
\begin{aligned}
\mathcal{B}_{i / N}\left(\xi, x_{T}^{2}, \mu\right) & =\sum_{j} \int_{\xi}^{1} \frac{d z}{z} \mathcal{I}_{i \leftarrow j}\left(z, x_{T}^{2}, \mu\right) \phi_{j / N}(\xi / z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right) \\
B_{i / N}\left(\xi, x_{T}^{2}, \mu\right) & =\sum_{j} \int_{\xi}^{1} \frac{d z}{z} I_{i \leftarrow j}\left(\xi / z, x_{T}^{2}, \mu\right) \phi_{j / N}(z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right)
\end{aligned}
$$

* Expansion kernels are obtained from matching calculation

$$
\begin{aligned}
& \mathcal{I}_{q \leftarrow q}: \\
& \text { Raco } \\
& \text { - [ace } \\
& \mathcal{I}_{q \leftarrow g}:
\end{aligned}
$$

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

* Collinear loops are not defined and require a regulator beyond dimensional regularization
+ Most economic possibility is to use analytic regularization scheme: Smirnov 1993

$$
\frac{1}{-(p-k)^{2}-i \varepsilon} \rightarrow \frac{\nu_{1}^{2 \alpha}}{\left[-(p-k)^{2}-i \varepsilon\right]^{1+\alpha}}
$$

+ Adaption to SCET collinear propagators:

$$
\frac{1}{-(p-k)^{2}-i \varepsilon} \rightarrow \frac{\nu_{1}^{2 \alpha}}{\left[-(p-k)^{2}-i \varepsilon\right]^{1+\alpha}}
$$

regularized Wilson lines
regularized propagator

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

* Introducing analogous regulator β in anticollinear sector, we find:

$$
\begin{aligned}
&\left.\mathcal{I}_{q \leftarrow q}\left(z, x_{T}^{2}, \mu\right)\right|_{\alpha \text { reg. }}=-\frac{C_{F} \alpha_{s}}{2 \pi}\{ \left(\frac{1}{\epsilon}+L_{\perp}\right)\left[\left(\frac{2}{\alpha}-2 \ln \frac{\mu^{2}}{\nu_{1}^{2}}\right) \delta(1-z)+\frac{1+z^{2}}{(1-z)_{+}}\right] \quad L_{\perp}=1 \\
&\left.+\delta(1-z)\left(-\frac{2}{\epsilon^{2}}+L_{\perp}^{2}+\frac{\pi^{2}}{6}\right)-(1-z)\right\} . \\
&\left.\mathcal{I}_{q \leftarrow q}\left(z, x_{T}^{2}, \mu\right)\right|_{\beta \text { reg. }}=-\frac{C_{F} \alpha_{s}}{2 \pi}\left\{\left(\frac{1}{\epsilon}+L_{\perp}\right)\left[\left(-\frac{2}{\beta}+2 \ln \frac{q^{2}}{\nu_{2}^{2}}\right) \delta(1-z)+\frac{1+z^{2}}{(1-z)_{+}}\right]-(1-z)\right\}
\end{aligned}
$$

$$
L_{\perp}=\ln \frac{x_{T}^{2} \mu^{2}}{4 e^{-2 \gamma_{E}}}
$$

* The product of two such functions is regulator independent:

$$
\begin{aligned}
& {\left[\mathcal{I}_{q \leftarrow q}\left(z_{1}, x_{T}^{2}, \mu\right) \mathcal{I}_{\bar{q} \leftarrow \bar{q}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{q^{2}}} \\
& =\delta\left(1-z_{1}\right) \delta\left(1-z_{2}\right)\left[1-\frac{C_{F} \alpha_{s}}{2 \pi}\left(2 L_{\perp} \ln \frac{q^{2}}{\mu^{2}}+L_{\perp}^{2}-3 L_{\perp}+\frac{\pi^{2}}{6}\right)\right] \\
& \quad-\frac{C_{F} \alpha_{s}}{2 \pi}\left\{\delta\left(1-z_{1}\right)\left[L_{\perp}\left(\frac{1+z_{2}^{2}}{1-z_{2}}\right)_{+}-\left(1-z_{2}\right)\right]+\left(z_{1} \leftrightarrow z_{2}\right)\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

+ From previous result we read off:

$$
\begin{aligned}
F_{q \bar{q}}\left(L_{\perp}, \alpha_{s}\right)= & \frac{C_{F} \alpha_{s}}{\pi} L_{\perp}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
I_{q \leftarrow q}\left(z, L_{\perp}, \alpha_{s}\right)= & \delta(1-z)\left[1+\frac{C_{F} \alpha_{s}}{4 \pi}\left(L_{\perp}^{2}+3 L_{\perp}-\frac{\pi^{2}}{6}\right)\right] \\
& -\frac{C_{F} \alpha_{s}}{2 \pi}\left[L_{\perp} P_{q \leftarrow q}(z)-(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
I_{q \leftarrow g}\left(z, L_{\perp}, \alpha_{s}\right)= & -\frac{T_{F} \alpha_{s}}{2 \pi}\left[L_{\perp} P_{q \leftarrow g}(z)-2 z(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Two-loop result for $F_{q \bar{q}}\left(L_{\perp}, \alpha_{s}\right)=\sum_{n=1}^{\infty} d_{n}^{q}\left(L_{\perp}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{n}$:

$$
d_{2}^{q}\left(L_{\perp}\right)=\frac{\Gamma_{0}^{F} \beta_{0}}{2} L_{\perp}^{2}+\Gamma_{1}^{F} L_{\perp}+d_{2}^{q}, \quad d_{2}^{q}=C_{F} C_{A}\left(\frac{808}{27}-28 \zeta_{3}\right)-\frac{224}{27} C_{F} T_{F} n_{f}
$$

