LoopFest X

May 12-14, 2011
Norihwestern University
Radiative corrections for

Ten years of LoopFest

- The LoopFest conference is ten years old
- LoopFest I was held at BNL; it was organized by Doreen, Sally and Uli

- of course this is not the first LoopFest ...
- the first loopfest took place in 1980

From Uli Baur talk at LoopFest 2001

Ten years of LoopFest

- LoopFest changed in a number of ways during these years
- LoopFest I was held in the "`plenary/parallel" mode that has been changed to the "only plenary" mode already at LoopFest II
- LoopFest I agenda was dominated by physics of Future Linear Collider - there was not a single plenary talk on any other physics...
- First talks on hadron collider physics and B-physics appeared only at the LoopFest II
- The LoopFest broadened its scope significantly making it an important meeting for people who are involved with various aspects of Standard Model physics

What did we know in 2002?

- We came to 2002 following LEP ánd Run I Tevatron, with hopes for the Run II and in the middle of the successful B-physics program
- Absence of any large New Physics signal provided a strong boost for the development of our field throughout the LEP lifetime
- Deep understanding of perturbative QFT was developed before and during the LEP era

Basics of PERTURBATIVE QCD

Yu. L. Dokshitzer, V. A. Khoze
A. H. Mueller and S. I. Troyan

QCD and
Collider Physics
R.K. ELLIS, W. J. STIRLING

AND B.R. WEBBER

What did we know in 2002?

- Variety of particle physics results indicated a consistent picture, with a healthy fraction of three sigma fluctuations

What did we know in 2002 ?

- Integration-by-parts

Tkachov, Chetyrkin

- Laporta algorithm
- Three-loop massless graphs (Mincer)

Larin, Vermaseren, Gorishni

- Three-loop vacuum bubbles (Matad) Steinhauser
- Asymptotic expansions , strategy of regions

Smirnov, Beneke

- Spinor-helicity methods Berends, Wu
- Color decomposition

Berends, Giele, Mangano

$$
A_{j k}^{\mathrm{MHV}}=i \frac{\langle j k\rangle^{4}}{\langle 12\rangle \ldots\langle n 1\rangle}
$$

- Recursion relations Berends, Giele
- Unitarity ideas Barbieri, Remiddi; van Neerven; Bern, Dixon, Kosower
- Subtraction methods for NLO Catani, Seymour, Frixione, Kunstt, Signer
- CKKW algorithm Catani, Krauss, Kuhn, Webber
- Many two-loop amplitudes for $2 \rightarrow 2$ parton scattering

What did we know in 2002?

- Four-loop QCD beta-function, quark mass anomalous dimension etc.

Van Ritbergen, Vermaseren, Larin

- Two-loop QED corrections to muon lifetime Van Ritbergen, Stuart
- Four-loop and three-loop QED and two-loop electroweak corrections to the muon magnetic anomaly Kinoshita; Remiddi, Laporta, Czarnecki, Marciano, Krause
- Top threshold at NNLO ; Upsilon sum rules at NNLO, NRQED

Beneke, Smirnov, Signer, Hoang, Teubner, Yakovlev

- QCD resummations, jet algorithms etc.

Catani, Seymour, Sterman, Collins, Soper

- NLO QCD results for four-jet production in e+e- annihilation, three-jet production in hadron collisions

Dixon, Signer, Giele, Kosower, Kilgore

- NNLO QCD corrections to Drell-Yan total production cross-section van Neerven
- NNLO QCD for inclusive Higgs production

Harlander, Kilgore, Anastasiou, K.M.

What did we learn since 2002?

- What has changed in the past ten years?
- What new knowledge has been created?
- What cán we do now that we were unable to do before?

Eligibility requirements:

Must be part of $\mathrm{N}=0$ sector of a perturbative QFT
Must have phenomenological applications
Must be considered nearly impossible by experts
Must be completed between 2002-2011

Top
 songs

\#10 Bhabha scattering at two loops

- $e^{+} e^{-} \rightarrow e^{\mp} e^{-}$is a process used to monitor luminosity at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =\frac{\alpha^{2}}{s}\left(\frac{1-x+x^{2}}{x}\right)^{2}\left[1+\left(\frac{\alpha}{\pi}\right) \delta_{1}+\left(\frac{\alpha}{\pi}\right)^{2} \delta_{2}+\mathcal{O}\left(\alpha^{3}\right)\right] \\
\delta_{1} & =\left(4 L_{\text {soft }}+3+\frac{2}{3} N_{f}\right) \ln \left(\frac{s}{m_{e}^{2}}\right)+\delta_{1}^{(0)},
\end{aligned} \quad \text { Berends, Kleiss; } \quad \text { Remiddi et al. 1983 }
$$

- The two-loop QED corrections were obtained in 2001 by Z. Bern, L. Dixon and A. Ghinculov, in the massless approximation
- A. Penin used the universality of soft and collinear limits to translate those massless results into a results where the electron mass is the collinear regulator
- This work motivated A. Mitov and S. Moch to derive general formula the connects massive and massless amplitudes, in QED and QCD

$$
\left.\mathcal{M}(m)=\Pi \sqrt{Z_{i}(m)} \mathcal{M}(0)+\mathcal{O}(m / \sqrt{s})\right)^{-}
$$

\#9 MCFM: the flower o' Scotland

MCFM Summary - v. 3.4

$p \bar{p} \rightarrow W^{ \pm} / Z$	$p \bar{p} \rightarrow W^{+}+W^{-}$
$p \bar{p} \rightarrow W^{ \pm}+Z$	$p \bar{p} \rightarrow Z+Z$
$p \bar{p} \rightarrow W^{ \pm}+\gamma$	$p \bar{p} \rightarrow W^{ \pm} / Z+H$
$p \bar{p} \rightarrow W^{ \pm}+g^{\star}(\rightarrow b \bar{b})$	$p \bar{p} \rightarrow Z b \bar{b}$
$p \bar{p} \rightarrow W^{ \pm} / Z+1$ jet	$p \bar{p} \rightarrow W^{ \pm} / Z+2$ jets
$p \bar{p}(g g) \rightarrow H$	$p \bar{p}(g g) \rightarrow H+1$ jet
$p \bar{p}(V V) \rightarrow H+2$ jets	

- MCFM aims to provide a unified description of a number of processes at NLO accuracy.
- Various leptonic and/or hadronic decays of the bosons are included as further sub-processes.
■ MCFM version 2.0 is part of the CDF code repository.

J. Campbell, R.K. Ellis

MCFM Information

- Version 3.4 available at: http://mcfm.fnal.gov
- Improvements over previous rele - more processes
- better user interface
- support for PDFLIB, Les Hou

■ ntuples as well as histogram

- unweighted events
songs

- Pythia/Les Houches generator interface (LO)
- Coming attractions:
- even more processes, photon fragmentation etc.
K.Ellis, Loopfest 2003 talk

EZ Enterprises are proud to present:

$$
\text { QCDLoop }^{\text {TM }}
$$

Never calculate a scalar one-loop integral ever again!
One stop shopping for all your one-loop needs!

Operators are standing by, call 1-800-QCDLoop today
"If you need one-loop, do yourself a favor, make it EZ"

Top

songs

\#8 Parton shower MC and NLO

- Parton showers and NLO calculations first combined by̆
- S. Frixione and B. Webber - MC@NLO
- NLO normalization for cross-sections, smooth continuation of distributions from hard regions, controlled by the NLO, to soft regions, controlled by MC

Further developments POWHEG, MEnloPS

P. Nason, C. Oleari

Further challenges: more complex processes, CKKW@NLO

MC@NLO Is heavily used by the experimentalists

$$
\text { \#7 } b \rightarrow s \gamma \text { at NNLO in QCD }
$$

- The first step in this story is to justify connecting B-hadron to bparton
- NNLO branching fraction for $\bar{B} \rightarrow X_{s} \gamma$
- Truly gigantic effort
- up to three-loop matching;

- up to four-loop anomalous dimension $\mu=m_{b}$
- up to two-loop matrix elements at

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s}^{\prime} \gamma\right)_{\exp }=(3.55 \pm 0.24) \times 10^{-4} \\
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{\mathrm{th}}=(3.15 \pm 0.23) \times 10^{-4}
\end{aligned}
$$

M. Misiak, H. Asatrian, K. Bierl, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia, P. Gambino, M. Gorbahn, C. Greub, U. Haisch, A. Hovhannisyan, T. Hurth, A. Mitov, V. Poghosyan, M. Slusarczyk, M. Steinhauser; M. Neübert, T. Becher
Further work to estimate the quality of the charm mass extrapolation

To OPP

\#6 The BCF and the OPP

- R. Britto, F. Cachazo and B. Feng observed that any box integral reduction coefficient can be obtained from a quadruple cut

Box Coefficients from Quadruple Cuts

(RB, Cachazo, Feng)

The loop momentum solution
The box coefficients computed from quadruple cuts are given by

$$
c=\frac{1}{2} \sum_{\mathcal{S}} A_{1}^{\text {tree }} A_{2}^{\text {tree }} A_{3}^{\text {tree }} A_{4}^{\text {tree }}
$$

\mathcal{S} is the set of all solutions of the on-shell conditions for the internal lines.
$\mathcal{S}=\left\{\ell \mid \ell^{2}=0, \quad\left(\ell-K_{1}\right)^{2}=0, \quad\left(\ell-K_{1}-K_{2}\right)^{2}=0, \quad\left(\ell+K_{4}\right)^{2}=0\right\}$

Can these equations always be solved?

In complexified momentum space, there are exactly 2 solutions.
(Note: nonvanishing 3-point amplitudes.)

In four dimensions, these four delta functions localize the integral completely. This computation is very easy!

\#6 The BCF and the OPP

- G. Ossola, R. Pittau and K. Papadopoulos came up with a semianalytic method to perform a reduction of one-loop integrals

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{i}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

One of the great virtues of the OPP is that it made generalized unitarity at one-loop fully derivable. It also helped, in tremendous way, to combine the speed and easiness of numerical calculations with the high degree of analytic control

	Process	μ	$n_{l f}$	Cross section (pb)		
				LO	NLO	
a.1	$p p \rightarrow t \bar{t}$	$m_{\text {top }}$	5	123.76 ± 0.05	162.08 ± 0.12	
a.2	$p p \rightarrow t j$	$m_{\text {top }}$	5	34.78 ± 0.03	41.03 ± 0.07	
a.3	$p p \rightarrow t j j$	$m_{\text {top }}$	5	11.851 ± 0.006	13.71 ± 0.02	
a.4	$p p \rightarrow t \bar{b} j$	$m_{\text {top }} / 4$	4	25.62 ± 0.01	30.96 ± 0.06	
a.5	$p p \rightarrow t \bar{b} j j$	$m_{\text {top }} / 4$	4	8.195 ± 0.002	8.91 ± 0.01	
b.1	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e}$	m_{W}	5	5072.5 ± 2.9	6146.2 ± 9.8	
b.2	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j$	m_{W}	5	828.4 ± 0.8	1065.3 ± 1.8	
b.3	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j j$	m_{W}	5	298.8 ± 0.4	300.3 ± 0.6	
b.4	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-}$	m_{Z}	5	1007.0 ± 0.1	1170.0 ± 2.4	
b.5	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j$	m_{Z}	5	156.11 ± 0.03	203.0 ± 0.2	
b. 6	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j j$	m_{Z}	5	54.24 ± 0.02	56.69 ± 0.07	
c. 1	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} b \bar{b}$	$m_{W}+2 m_{b}$	4	11.557 ± 0.005	22.95 ± 0.07	
c.2	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} t \bar{t}$	$m_{W}+2 m_{\text {top }}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001	
c.3	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} b \bar{b}$	$m_{Z}+2 m_{b}$	4	9.459 ± 0.004	15.31 ± 0.03	
c.4	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} t \bar{t}$	$m_{Z}+2 m_{\text {top }}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002	
c.5	$p p \rightarrow \gamma t \bar{t}$	$2 m_{\text {top }}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003	
d.1	$p p \rightarrow W^{+} W^{-}$	$2 m_{W}$	4	29.976 ± 0.004	43.92 ± 0.03	
d.2	$p p \rightarrow W^{+} W^{-} j$	$2 m_{W}$	4	11.613 ± 0.002	15.174 ± 0.008	
d. 3	$p p \rightarrow W^{+} W^{+}{ }_{j j}$	$2 m_{W}$	4	0.07048 ± 0.00004	0.1377 ± 0.0005	
e. 1	$p p \rightarrow H W^{+}$	$m_{W}+m_{H}$	5	0.3428 ± 0.0003	0.4455 ± 0.0003	
e.2	$p p \rightarrow H W^{+} j$	$m_{W}+m_{H}$	5	0.1223 ± 0.0001	0.1501 ± 0.0002	
e.3	$p p \rightarrow H Z$	$m_{Z}+m_{H}$	5	0.2781 ± 0.0001	0.3659 ± 0.0002	
e.4	$p p \rightarrow H Z j$	$m_{Z}+m_{H}$	5	0.0988 ± 0.0001	0.1237 ± 0.0001	
e.5	$p p \rightarrow H t \bar{t}$	$m_{\text {top }}+m_{H}$	5	0.08896 ± 0.00001	0.09869 ± 0.00003	
e. 6	$p p \rightarrow H b \bar{b}$	$m_{b}+m_{H}$	4	0.16510 ± 0.00009	0.2099 ± 0.0006	
e. 7	$p p \rightarrow H j j$	m_{H}	5	1.104 ± 0.002	1.036 ± 0.002	

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MADFKS and MADLOOP. The errors are due to the statistical uncertainty of Monte Carlo integration. See the text for details.

- MadLoop, Hirschi et al. 2011

Top songs

 \#5 NLO QCD for multi-parton processesThe NLO revolution
Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, Denner, Dittmaier, Pozzorini, Kallweit
1980 1985 1990 1995

An experimenter's wishlist

- Hadron collider cross-sections one would like to know at NLO

Single boson	Diboson	Triboson	Heavy flavour
$W+\leq 5 j$	$W W+\leq 5 j$	$W W W+\leq 3 j$	$t \bar{t}+\leq 3 j$
$W+b \bar{b}+\leq 3 j$	$W W+b \bar{b}+\leq 3 j$	$W W W+b \bar{b}+\leq 3 j$	$t \bar{t}+\gamma+\leq 2 j$
$W+c \bar{c}+\leq 3 j$	$W W+c \bar{c}+\leq 3 j$	$W W W+\gamma \gamma+\leq 3 j$	$t \bar{t}+W+\leq 2 j$
$Z+\leq 5 j$	$Z Z+\leq 5 j$	$Z \gamma \gamma+\leq 3 j$	$t \bar{t}+Z+\leq 2 j$
$Z+b \bar{b}+\leq 3 j$	$Z Z+b \bar{b}+\leq 3 j$	$W Z Z+\leq 3 j$	$t \bar{t}+H+\leq 2 j$
$Z+c \bar{c}+\leq 3 j$	$Z Z+c \bar{c}+\leq 3 j$	$Z Z Z+\leq 3 j$	$t \bar{b}+\leq 2 j$
$\gamma+5 j$	$\gamma \gamma+\leq 5 j$		$b \bar{b}+\leq 3 j$
$\gamma+b \bar{b}+\leq 3 j$	$\gamma \gamma+b \bar{b}+\leq 3 j$		
$\gamma+c \bar{c}+\leq 3 j$	$\gamma \gamma+c \bar{c}+\leq 3 j$		
	$W Z+\leq 5 j$		
	$W Z+b \bar{b}+\leq 3 j$		
	$W Z+c \bar{c}+\leq 3 j$		
	$W \gamma+\leq 3 j$		
	$Z \gamma+\leq 3 j$		

Blackhat collaboration, 2010

$$
\begin{aligned}
& p p \rightarrow W(Z)+3 j \\
& p p \rightarrow t \bar{t} b \bar{b} \\
& p p \rightarrow t \bar{t} j j \\
& p p \rightarrow W^{+} W^{+} j j \\
& p p \rightarrow W^{+} W^{-} b \bar{b} \\
& p p \rightarrow W^{+} W^{-} j j
\end{aligned}
$$

$$
p p \rightarrow W+4 j
$$

Top songs

\#4 NNLO for the Drell-Yan and the Higgs

- First hadron collider processes for which NNLO QCD results for fully differential quantities became known ; widely used by the Tevatron and the LHC collaborations

CMS WIZ inclusive results

Good agreement with NNLO theory expectations

- Unfolded distribution, normalized to Z peak cross section and corrected for QED finalstate radiation effects
Good agreement with NNLO predictions within uncertainties Recent work: R. Gavin, Y. Li, F. Petriello, S. Quackenbush

\#4 NNLO for the Drell-Yan and the Higgs

- Acceptances, neural nets, exclusions and the big picture

PQCD computations verify event generators; Event generators are used to feed neural nets Neural nets give exclusion limits Exclusion limits are fed into the BIG PICTURE....

Original calculations due to C. Anastasiou, F. Petriello, K.M., M. Grazzini, S. Catani

\#4 NNLO for the Drell-Yan and the Higgs
 son iggs

- Interestingly- the technology behind these result may be more powerful than we thought
- M. Czakon pointed out that combining the idea of section decomposition for real-emission phase space with the idea of phase-space partitioning is very fruitful

Double-real radiation in hadronic top quark pair production
M. Czakon ${ }^{a}$
${ }^{a}$ Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,
D-52056 Aachen, Germany
as a proof of a certain concept

Charalampos Anastasiou

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309, U.S.A.
Kirill Melnikov
Department of Physics and Astronomy, University of Hawaii,
2505 Correa Rd., Honolulu, Hawaii 96822
Frank Petriello
Department of Physics, Johns Hopkins University,
3400 North Charles St., Baltimore, MD 21218

Three-jet cross sections to next-to-leading order

Top IO songs.

\#3 R(s) at four loops

- The e+e- annihilation cross-section to hadrons is a basic QCD observable; it was pushed to new limits by P. Baikov, K. Chetyrkin and J. Kuhn
- Non-trivial IBP reduction, bâsed on the Laurant expansion around $D=\infty$ limit
- Unusual method to compute master integrals leads to enormous simplifications
- Important correction to tau-decays and precise determination of the strong coupling constant

$$
\begin{gathered}
R(s)=12 \pi \operatorname{Im} \Pi(-s-i \epsilon) \\
3 Q^{2} \Pi\left(Q^{2}\right)=i \int \mathrm{~d}^{4} x e^{i q x}\langle 0| T j_{\mu}(x) j_{\nu}(0)|0\rangle \\
R(s)=1+a_{s}+1.4097 a_{s}^{2}-12.76703 a_{s}^{3}-80.0075 a_{s}^{4} . . \text { for } \mathrm{n}_{-} \mathrm{f}=5 \\
\alpha_{s}\left(M_{z}\right)^{\text {NNNLO }}=0.1190 \pm 0.0026_{\exp }
\end{gathered}
$$

Top

 songs
\#2 Altarelli-Parisi kernels at NNLO

- Any higher-order calculation at a hadron collider requires parton distribution functions, fitted and evolved through a matching order
- Aiming at NNLO, need AP kernels with the matching accuracy. Those were obtained in a seminal paper by S. Moch, J. Vermaseren and A.Vogt in 2004

$$
\mathcal{O}_{N}=\langle p| \bar{\psi} \gamma_{\mu_{1} . .} \dot{\gamma}_{\mu_{N}} \psi|p\rangle
$$

Parton Distribution Functions

momentum fractions x_{1} and x_{2} determined by mass and rapidity of X
x dependence of $f_{i}\left(x, Q^{2}\right)$ determined by 'global fit' to deep inelastic scattering and other data, Q^{2} dependence determined by DGLAP equations:

$\frac{\partial q_{i}\left(\mathbf{x}, \mathbf{Q}^{2}\right)}{\partial \log \mathbf{Q}^{2}}$	
$\frac{\partial \mathrm{g}\left(\mathrm{x}, \mathbf{Q}^{2}\right)}{\partial \log \mathbf{Q}^{2}}$	$\begin{aligned} & \frac{\alpha_{\mathbf{S}}}{2 \pi} \int_{\mathrm{x}}^{1} \frac{\mathrm{dy}}{\mathrm{y}}\left\{\mathrm{P}_{\mathrm{gq}}\left(\mathbf{y}, \alpha_{\mathbf{S}}\right) \mathrm{q}_{j}\left(\frac{\mathrm{x}}{\mathrm{y}}, Q^{2}\right)\right. \\ & \left.+\mathrm{P}_{\mathrm{gg}}\left(\mathbf{y}, \alpha_{\mathbf{S}}\right) \mathbf{g}\left(\frac{\mathrm{x}}{\mathrm{y}}, \mathbf{Q}^{2}\right)\right\} \end{aligned}$

LHC parton kinematics

Top songs

\#1 NNLO for three jet observables

- Spectacular achievement by T. Gehrmann, A. Gehrmann, G. Heinrich, N. Glover and S. Weinzierl

Summary and Outlook

- completed calculation of NNLO corrections to event shapes and $e^{+} e^{-} \rightarrow 3 j$
- improved theory uncertainty
- by $30 \%(T, C)$ to $60 \% R_{3 j}$
- new extraction of α_{s} :
- improved consistency between different shape variables
- lower theory uncertainty
- more phenomenology to come
- Precision calculations for jet observables at LHC in progress
$\alpha_{s}\left(M_{z}\right)$ from NNLO jet observables
event shapes at NNLO+NLLA
' JADE (S. Bethke, S. Kluct, C. Pall, J. Schieck)
0.1172 ± 0.0006 (st) ± 0.0040 (sy) ± 0.0030 (th)
- ALEPH (G. Dissertori,A.Gehrmann-De Ridder, EW.N. Glover:
G. Heinrich, G. Luisoni, H. Stenzel,TG
- $0.1224 \pm 0.0009 \pm 0.0015 \pm 0.0035$
'thrust at NNLO+N3LLA (T. Becher, M. Schwartz)
$0.1172 \pm 0.0010 \pm 0.0014 \pm 0.0012$
, thrust: NNLO+dispersive model (R. Davison, B.Webber) 0.1164 ± 0.0027
" moments: NNLO+dispersive model
- JADE/OPAL (M.Jaquier, G. Luisoni,TG) $0.1153 \pm 0.0017(\exp) \pm 0.0023$ (th)
। three-jet rate at NNLO
- ALEPH (G. Dissertori et al.)
0.1175 ± 0.0020 (exp) ± 0.0015 (th)
T. Gehrmann talk, LF 2008

The three revolutions

- During the past ten years our field went through a remarkable transformation
- the NNLO revolution
- the NLO revolution
- the parton shower revolution
- The short version of the NLO wishlist has been worked out
- NNLO results for fully differential computations became a reality and are heavily used in the experimental studies
- Parton showers are combined with NLO QCD computations and with high-multipliticy leading order computations
- There is every reason for all of us to be proud of these accomplishments

The power of simple ideas

- While we like to think about our field as the "rocket science", many of the key advances came from simple ideas
- Berends - Giele recursion
- Integration-by-parts and Laporta algorithm
- Asymptotic expansions
- Sector decomposition
- BCF
- OPP

In contrast to many other things in high-energy physics, it is easy to explain those. Progress seems to come from viewing a problem in an unorthodox way and focusing on physics that comes out of it

The power of not-too-simple ideas

- Study of properties of scattering amplitudes in $\mathrm{N}=4$ super Yang-Mills is a very active field now
- New symmetries, trivialization of cases that looks complicated, hopes to completely solve QCD@N=4

- Is there anything that can be used in real-life computations?
- recurrence relations for the integrand and Feynman tree theorem
- fast BCFW, Bern-Carrasco-Johansson relations
- helicity states in higher-dimensional space times

Puzzles: harbingers of New Physics?

- Top quark forward-backward asymmetry
- Feature in Wjj
- Demise of the CKM
- Proton charge radius in muonic hydrogen
- Muon anomalous magnetic moment

		$\sin (2 \beta)$	$f_{B}(\mathrm{McV})$
$\mathrm{E}_{K}, \Delta \mathrm{M}_{q},\left\|\mathrm{~V}_{\mathrm{d}}\right\|, \gamma, \mathrm{B} \rightarrow \tau \gamma$	-1	$0.867 \pm 0.050(3.2 \mathrm{v})$	200.3 ± 9.3
$\epsilon_{\chi}, \Delta M_{q},\left\|V_{\text {d }}\right\|$	1	0.827 ± 0.083 (1.9v)	$196 \pm \pm 11$.
$\epsilon_{K}, \Delta \mathrm{M}_{q}, \gamma, \mathrm{~B} \rightarrow \tau V$	H-1	0.905 ± 0.047 (3.1v)	201.3 ± 9.0
$\Delta \mathrm{M}_{\varphi}, \mid V_{\text {c }}, \gamma, \gamma, \mathrm{B} \rightarrow \tau v$	H	0.889 ± 0.055 (2.4v)	195 ± 11.
$\epsilon_{K}, \Delta M_{\text {¢ }},\left\|V_{\mathrm{d}}\right\|, \mathrm{B} \rightarrow \tau \boldsymbol{V}$	H-1	0.870 ± 0.049 (3.2v)	201.0 ± 9.3
$\epsilon_{\mathrm{K}}, \Delta \mathrm{M}_{q},\left\|V_{\mathrm{d}}\right\|, \gamma, \mathrm{B} \rightarrow \tau v,\left\|V_{\text {ub }}^{\text {tot }}\right\|$	+91	0.801 ± 0.045 (2.4v)	200 ± 10.
$\epsilon_{\mathrm{K}}, \Delta \mathrm{M}_{q},\left\|V_{\text {d }}\right\|, \gamma, \mathrm{B} \rightarrow \tau v,\left\|V_{\mathrm{ub}}^{\text {cucl }}\right\|$	$1+1$	0.712 ± 0.037 (0.9v)	195. ± 11.
$\epsilon_{\kappa}, \Delta \mathrm{M}_{q},\left\|V_{\mathrm{d}}\right\|, \gamma, \mathrm{B} \rightarrow \tau v,\left\|V_{\mathrm{ub}}^{\mathrm{ncd}}\right\|$	101	0.834 ± 0.031 (3.9v)	200.3 ± 9.7
$\epsilon_{\kappa}, \Delta \mathrm{M}_{q}, \mid V_{\mathrm{d}}{ }^{\text {d }}, \gamma$	\vdash	0.814 ± 0.081 (1.8ऽ)	$194 . \pm 11$.
$\left[E_{K}, \Delta \mathrm{M}_{q},\left\|V_{\mathrm{d}}\right\|, \gamma, \mathrm{B} \rightarrow \tau \nu\right]^{\prime *}$	H-	$0.859 \pm 0.055(2.9 v)$	202 ± 13.
$\left[\epsilon_{\kappa}, \Delta \mathrm{M}_{\varphi}, \mid \mathrm{V}_{\mathrm{d}}, \gamma, \mathrm{B} \rightarrow \tau \nu\right]^{+++}$	(-1	0.867 ± 0.050 (3.0c)	$200 . \pm 9.3$
$\mathrm{b} \rightarrow \mathrm{ces}$ tree	*	0.668 ± 0.023	

Real puzzles in real physics require real explanation

See you all the PhysicsFest 2012!

