NLO QCD corrections to W⁺W⁻bb̄ production

Stefan Kallweit¹

in collaboration with A. Denner, S. Dittmaier and S. Pozzorini Phys. Rev. Lett. 106, 052001 (2011)

¹Paul Scherrer Institut, Würenlingen und Villigen

May 14, 2011, Loopfest X

- - Motivation
 - Full Description vs. Narrow-Width Approximation
- Technical aspects of the calculation
 - NLO QCD calculation with Feynman Diagrams
 - Complex-Mass Scheme for Unstable Particles
- Numerical Results for the Tevatron and the LHC
 - Integrated WWbb cross sections
 - Differential WWbb distributions

Two calculations for $pp \rightarrow t\bar{t}b\bar{b}$

- arXiv:0905.0110 and arXiv:1001.4006 by Bredenstein, Denner, Dittmaier, and Pozzorini Fevnman diagrams and tensor integrals
- arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau, and Worek OPP reduction and HFLAC

• Two calculations for $pp \rightarrow Viii$

- arXiv:0906.1445 by Ellis, Melnikov, and Zanderighi D-dimensional unitarity (leading colour)
- arXiv:0907.1984 (Wjjj) and arXiv:1004.1659 (Zjjj) by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, and Maitre generalized unitarity (full colour)

• $q\bar{q}$ -channel contribution to $pp \rightarrow b\bar{b}b\bar{b}$

- arXiv:0910.4379 by Binoth, Greiner, Guffanti, Reuter, Guillet, and Reiter Feynman diagrams and tensor integrals (GOLEM)
- First result for $pp \rightarrow t\bar{t}jj$
 - arXiv:1002.4009 by Bevilacqua, Czakon, Papadopoulos, and Worek OPP reduction and HELAC

- One calculation for $pp \rightarrow W^+W^{\pm}ii$
 - arXiv:1007.5313 and arXiv:1104.2327 by Melia, Melnikov, Rontsch, and Zanderighi D-dimensional unitarity
- First result for $pp \rightarrow W + 4j$
 - arXiv:1009.2338 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, and Maitre generalized unitarity (leading colour)
- Two calculations for $pp \rightarrow W^+W^-b\bar{b}$
 - arXiv:1012.3975 by Denner, Dittmaier, SK, and Pozzorini Feynman diagrams and tensor integrals
 - arXiv:1012.4230 by Bevilacqua, Czakon, van Hameren, Papadopoulos, and Worek OPP reduction and HFLAC

Full description of $t\bar{t}$ prod \times decay

- off-shell tops and non-resonant backgr.
- \bullet W $\to l\nu$ decays in spin-correlated NWA

Huge tt samples at hadron colliders

- Tevatron: few 10^4 events $\Rightarrow \frac{\delta \sigma}{\sigma} < 10\%$
- LHC at 7(14) TeV: $1.5(9) \times 10^5$ events per fb⁻¹ $\Rightarrow \frac{\delta \sigma}{2} = \text{few } \%$

Crucial measurements and tests

- precise studies of rich variety of (differential) observables
- checks and tuning of many theoretical/experimental tools
- $\delta \textit{m}_{\scriptscriptstyle t}^{\rm exp} \sim 1\,{\rm GeV}$ measurements

Relevance for discoveries

- typical discovery signature: leptons + jets + missing $E_{\rm T}$ (SUSY, $H \rightarrow W^+W^-, \dots$)
- heavy resonances decaying into $t\bar{t}$ in various BSM scenarios

NLO QCD corrections

Beenakker, Dawson, Ellis, Frixione, Kuijf, Meng, Nason, van Neerven, Schuler, Smith

Electroweak NLO corrections

Beenakker, Bernreuther, Denner, Fücker, Hollik, Kao, Kollar, Kühn, Ladinsky, Mertig, Moretti, Nolten, Ross, Sack, Scharf, Si, Uwer, Wackeroth, Yuan

From LL to NNLL resummations

Ahrens, Beneke, Berger, Bonciani, Catani, Contopanagos, Czakon, Falgari, Ferroglia, Frixione, Kidonakis, Kiyo, Laenen, Mangano, Mitov, Moch, Nason, Neubert, Pecjak, Ridolfi, Schwinn, Sterman, Uwer, Vogt, Yang

Towards full NNLO predictions

Anastasiou, Aybat, Bonciani, Czakon, Dittmaier, Ferroglia, Gehrmann, Gerhmann-De Ridder, Kniehl, Körner, Langenfeld, Maitre, Merebashvili, Mitov, Moch, Ritzmann, Rogal, Studerus, von Manteuffel, Uwer, Weinzierl

NLO $t\bar{t}$ production×decay in spin-correlated narrow-width approx.

Bernreuther, Brandenburg, Melnikov, Schulze, Si, Uwer

Doubly-resonant (DR)

Singly-resonant (SR)

Non-resonant (NR)

Narrow-Width Approximation

- only DR channels
- narrow-width limit of Breit-Wigner top resonances

$$\lim_{\Gamma_{\mathrm{t}}\to 0} \left|\frac{1}{p_{\mathrm{t}}^2 - m_{\mathrm{t}}^2 + \mathrm{i}\Gamma_{\mathrm{t}}m_{\mathrm{t}}}\right|^2 = \frac{\pi}{\Gamma_{\mathrm{t}}m_{\mathrm{t}}}\delta(p_{\mathrm{t}}^2 - m_{\mathrm{t}}^2)$$

Finite-width contributions to W⁺W⁻bb

- Off-shell corrections to DR channels
- SR+NR channels and interferences
- $\mathcal{O}(\Gamma_{\rm t}/m_{\rm t})$ corrections to inclusive observables

Full $m W^+W^-bar{b}$ description vs Narrow-Width Approximation in NLO

Narrow-Width Approximation

- only factorisable corrections to DR channels
- huge technical simplification

Finite-width contributions to $W^+W^-b\bar{b}$

- involve pentagons and hexagons
- non-DR and non-factorisable corrections

Soft-gluon enhancements ($\propto ln(\Gamma_t/m_t)$) separately contained in virtual and real NF corrections cancel in the sum. [Fadin/Khoze/Martin '94]

 \hookrightarrow Finite-width corrections remain $\mathcal{O}(\Gamma_{\mathrm{t}}/m_{\mathrm{t}})$ suppressed for inclusive observables.

Importance of finite-width effects

- ullet percent-level precision in $\sigma_{
 m incl}$
- ullet Shape of top resonance and related observables ($m_{
 m t}$ measurement)
- ullet off-shell regime of $\mathrm{W}^+\mathrm{W}^-\mathrm{b}ar{\mathrm{b}}$ background

Partonic channels:

Two independent full calculations:

Generation of Feynman diagrams

FeynArts 1.0 / 3.2

Algebraic reduction

MATHEMATICA / FormCalc [Hahn] + in-house extensions

Tensor integrals & numerics

Fortran77 / C++ executables:
 ∼ 1 GB

Real emission & IR Subtraction

- Madgraph & spinors
- Dipoles [Catani/Seymour '97] & AutoDipole [Hasegawa/Moch/Uwer '09]

Integration over 11-dim PS

 adaptive multi-channel Monte Carlo with 250-650 mappings per partonic channel

$$\sum_{\mathrm{col,pol}} \left(\begin{array}{c} \mathbf{w} \\ \mathbf{w} \end{array} \right)^* \mathbf{w} = \sum_{\mathrm{col,pol}} \left(\begin{array}{c} \mathbf{w} \\ \mathbf{w} \end{array} \right)^* \mathbf{w} + \mathcal{O}(1000) \text{ more diagrams}$$

Colour sums at zero cost thanks to colour factorisation

$$\times f^{a_1bd}f^{a_2cd}\left(T^cT^b\right)_{i_5i_6}$$

$$\sum a_{i_1...j_P} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4} \left[\bar{v}_5 \gamma_{\mu_5} \dots \gamma_{\mu_k} u_6 \right] \left\{ g \dots p \right\}_{i_1...j_P}^{\mu_1...\nu_P} \int d^D q \frac{q_{\nu_1} \dots q_{\nu_P}}{N_0 \dots N_{N-1}}$$

Algebraic reduction of helicity structures $\mathcal{O}(10^3 - 10^4)$ compact spinor chains \rightarrow fast helicity sums

$$\sum \ T_{j_1\dots j_P}^{(N)} \left\{g\dots p\right\}_{\substack{j_1\dots j_P,\\\nu_1\dots\nu_P}}$$

Numerical tensor-integral reduction avoids gigantic expressions and instabilities

$$\sum d_i + c_j + b_k + b_k + a_i$$

Reduction of tensor integrals $-e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier'05]

(A) Space-time 4-dim ($N \ge 5$ prop.)

simultaneous prop. & rank reduction

[Melrose '65; Denner/Dittmaier '02&'05; Binoth et. al. '05]

(B) Lorentz invariance ($N \le 4$ prop.)

reduction of rank (P) [Passarino/Veltman '79; Denner '93]

inversion of Gram matrix $Z_{mn} = 2p_m p_n$ unstable when $\det(Z) \to 0$

(C) General and robust solution of instability problems iterative det(Z)-expansion (and various alternative methods)

First physical application up to tensor rank P=5

- ullet CPU cost of colour/helicity summed $gg \to W^+W^-bar{b}$ loop amplitudes very low (450ms per phase-space point) similarly as for $gg \to t\bar{t}b\bar{b}$ (180 ms) where P=4.
- $\sigma_{\rm NLO}$ with statistical accuracy of $\mathcal{O}(10^{-3})$ requires $\mathcal{O}(10^{8})$ events obtained within 5–10 days on single CPU.
- Total CPU cost at LHC dominated by real and virtual gg-channel corrections.

Regularisation of unstable-particle propagators via $\text{Im}[\Sigma(M^2)] = M\Gamma$ resummation

$$\frac{1}{p^2 - M^2 + i\epsilon} \rightarrow \frac{1}{p^2 - M^2 + iM\Gamma}$$

can violate gauge invariance.

- \hookrightarrow Complex mass scheme (introduced for $e^+e^- \to W^+W^- \to 4f$ [Denner/Dittmaier/Roth/Wieders '05])
- Γ is absorbed into the renormalised pole mass $M^2 \to \mu^2 = M^2 iM\Gamma$ without modifying the bare Lagrangian
- Gauge invariance requires (in general) complex couplings

Technical aspects

- On-shell renormalisation on complex propagator pole: $\hat{\Sigma}(p^2) = 0$ at $p^2 = \mu^2$
- Scalar box integrals with complex masses (subtle analytic continuations!)
 - \bullet 't Hooft/Veltman approach: 24 \rightarrow 108 Li₂

■ Denner/Nierste/Scharf approach: 16 → 32 Li₂

[Nhung/Ninh '09: van Hameren '10]

[Denner/Dittmaier '10]

Particle masses and widths ($M_{\rm H}=\infty$, $m_{\rm b}=0$)

$$m_{\rm t} = 172.0 \,{\rm GeV}$$

 $\Gamma_{\rm t,LO} = 1.4655 \,{\rm GeV}$

$$m_{\rm t} = 172.0 \,{\rm GeV}$$
 $M_{\rm W} = 80.399 \,{\rm GeV}$ $M_{\rm Z} = 91.1876 \,{\rm GeV}$

$$m_{\rm t} = 172.0 \,{\rm GeV}$$
 $m_{\rm W} = 80.399 \,{\rm GeV}$ $m_{\rm Z} = 91.1870 \,{\rm GeV}$ $\Gamma_{\rm t,LO} = 1.4655 \,{\rm GeV}$ $\Gamma_{\rm t,NLO} = 1.3376 \,{\rm GeV}$ $\Gamma_{\rm W,NLO} = 2.0997 \,{\rm GeV}$

$$G_{\mu}$$
-scheme couplings $(G_{\mu} = 1.16637 \times 10^{-5} \text{ GeV}^{-2})$
 $\sin^2 \theta_w = 1 - M_{W}^2 / M_Z^2$, $\alpha = \sqrt{2} G_{\mu} M_{W}^2 \sin^2 \theta_w / \pi$

PDFs and
$$\alpha_{\rm S}$$
: MSTW2008NLO(LO) with $1/2 \le \mu_{\rm R,F}/m_{\rm t} \le 2$ variations

Anti- $k_{\rm T}$ Jet Algorithm

QCD partons with
$$|\eta| < 5$$
 \Rightarrow jets with $\sqrt{\Delta \phi^2 + \Delta y^2} > R = 0.4 (0.5)$

Typical Tevatron (LHC) cuts

$$p_{\mathrm{T,b}} > 20 \, (30) \, \mathrm{GeV} \qquad |\eta_{\mathrm{b}}| \leq 2.5$$

 $p_{\mathrm{T},l} > 20 \, \mathrm{GeV} \qquad |\eta_{l}| < 2.5$

$$|\eta_{\rm b}| \le 2.5$$

 $|\eta_{\it l}| < 2.5$

$$p_{\rm T,miss} > 25$$
 (20) GeV

Predictions for $\mu_{\rm R,F}=m_{\rm t}$ and $m_{\rm t}/2 \leq \mu_{\rm R,F} \leq 2m_{\rm t}$

σ	LO	NLO	NLO/LO
Tevatron	$44.31^{+19.68}_{-12.49} \mathrm{fb}$	$41.75^{+0.00}_{-3.79} \text{ fb}$	$0.942^{+0.000}_{-0.085}$
LHC	$662.4^{+263.4}_{-174.1} \text{ fb}$	840^{+27}_{-75} fb	$1.27^{+0.04}_{-0.11}$

Scale uncertainty at the Tevatron (LHC)

 44% (40%) LO uncertainty is mostly due to ${\Delta\sigma_{
m LO}\over\sigma_{
m LO}}\simeq {\Delta\alpha_{
m S}^2(\mu)\over\alpha_{
m c}^2(\mu)}$ and reduces to 9%(9%) at NLO

NLO corrections

- plots reflect $\sigma_{\rm NLO}$ stability and moderate corrections
- different sign and size for $q\bar{q}$ -dominated σ_{Tevatron} ($K \simeq 0.94$) and gg-dominated σ_{LHC} ($K \simeq 1.27$)

Good agreement with HELAC-OPP calculation [Bevilacqua et al. '10]

	σ	LO	NLO
Tevatron:	DDKP	$44.310[3]\mathrm{fb}$	$41.75[5]\mathrm{fb}$
	BCHPW	44.32[3] fb	$41.86[6]\mathrm{fb}$

Off-shell and non-resonant contributions to $\sigma_{\rm incl}$

Assessment of finite-width effects $\sigma(\Gamma_t) - \sigma(0)$

• numerical extrapolation to $\Gamma \to 0$ using five rescaled values $\Gamma_t \to \xi \Gamma_t$ with $0.1 \lesssim \xi < 1$

Cancellation of soft-gluon $ln(\Gamma_t/m_t)$ singularities

- dipole-subtracted virtual and real parts diverge logarithmically when $\Gamma_{\rm t} \rightarrow 0$
- linear convergence of $\sigma(\Gamma_t) \to \sigma(0)$ provides non-trivial consistency and stability check

Finite-width effects comparable to $\Gamma_{\rm t}/m_{\rm t} \simeq 0.8\%$

	$\frac{\sigma_{\rm LO}(\Gamma_{\rm t})}{\sigma_{\rm LO}(0)} - 1$	$rac{\sigma_{ m NLO}(\Gamma_{ m t})}{\sigma_{ m NLO}(0)} - 1$
Tevatron	-0.8%	-0.9%
LHC	+0.4%	+0.2%

quantifies precision of NWA for $\sigma_{\rm incl}$

p_{T} distributions of b jets at the Tevatron

Soft b-jet (left)

- saturates cut at 20 GeV
- \bullet +20% to -40% corrections

Hard b-jet (right)

- peaked around 80 GeV
- \bullet +50% to -30% corrections

Strong shape distortions

- especially at small p_T (impact on acceptance!)
 - to be compared with parton-shower effects

Soft b-jet (left)

- saturates cut at 30 GeV
- \bullet +30% to -10% corrections
- **←** Strong shape distortions

Hard b-jet (right)

- peaked around 80 GeV
- \bullet +40% to +20% corrections

- e^+ (μ^-) from W^+ (W^-) decay
- have typically $p_{\rm T} \lesssim 100 \, {\rm GeV}$ and tend to saturate the cut at 20 GeV
- \circ corrections range from 0% to -40%

Shape distortion

- mild in the vicinity of the cut, but fairly strong at high p_T
- relevant for boosted tops and NP searches
- when $p_T \gtrsim 100 \, \mathrm{GeV}$ fixed $\mu = m_t$ should be replaced by dynamical QCD scale

$$\mu^-$$
 from W^- decay

- have typically $p_{\rm T} \lesssim 100 \, {\rm GeV}$ and tend to saturate the cut at 20 GeV
- corrections range from +30% to 0%

Shape distortion

- mild in the vicinity of the cut, but fairly strong at high p_T
- relevant for boosted tops and NP searches
- when $p_T \gtrsim 100 \, \mathrm{GeV}$ fixed $\mu = m_t$ should be replaced by dynamical QCD scale

Although not observable $M_{\rm t} = M_{\rm be^+\nu_e}$ reflects off-shell nature of $2 \rightarrow 4$ calculation

- Breit-Wigner shape in the resonance region
- $\delta\Gamma_{\rm NLO}/\Gamma_{\rm LO} \simeq -9\%$ crucial for consistent normalisation of $\sigma_{\rm incl} \sim 1/\Gamma_{\rm t}^2$
 - Pole of top-quark progagator not shifted in on-shell scheme, but QCD radiation leads to $\mathcal{O}(1 \,\mathrm{GeV})$ invariant-mass losses
- m_t-shift depends on jet algorithm

NLO and Γ_t effects will improve description of observables used for m_t determination

Although not observable $M_{\rm t} = M_{\rm be^+\nu_e}$ reflects off-shell nature of $2 \rightarrow 4$ calculation

- Breit-Wigner shape in the resonance region
- $\delta\Gamma_{\rm NLO}/\Gamma_{\rm LO} \simeq -9\%$ crucial for consistent normalisation of $\sigma_{\rm incl} \sim 1/\Gamma_{\rm t}^2$
 - Pole of top-quark progagator not shifted in on-shell scheme, but QCD radiation leads to $\mathcal{O}(1 \,\mathrm{GeV})$ invariant-mass losses
- m_t-shift depends on jet algorithm

NLO and Γ_t effects will improve description of observables used for m_t determination

Observable related to m_t measurement

- visible decay products in $t \to bW^+ \to be^+\nu_e$ retain significant fraction of m_t
- good sensitivity to m_t via kinematic bound

$$M_{\mathrm{e^+b}}^2 \leq m_{\mathrm{t}}^2 - M_{\mathrm{W}}^2 \simeq (152\,\mathrm{GeV})^2$$

in LO and narrow-width approximation

Off-shell and NLO corrections

- M_{e^+h} bound violated by LO off-shell effects
- additional violation from NLO radiation
- strong NLO shape distortion below the bound: from +15% to -30% corrections

Observable related to m_t measurement

- visible decay products in $t \to bW^+ \to be^+\nu_e$ retain significant fraction of m_t
- good sensitivity to m_t via kinematic bound

$$M_{\mathrm{e^+b}}^2 \leq m_{\mathrm{t}}^2 - M_{\mathrm{W}}^2 \simeq (152\,\mathrm{GeV})^2$$

in LO and narrow-width approximation

Off-shell and NLO corrections

- M_{e^+h} bound violated by LO off-shell effects
- additional violation from NLO radiation
- strong NLO shape distortion below the bound: from +45% to +5% corrections

LO y_{e^+} distribution

- e⁺ populates central region
- almost exactly symmetric due to $t\leftrightarrow \bar{t}$ invariance of $q\bar{q}/gg \rightarrow t\bar{t}$

NLO charge and FB asymmetry

- IS-FS gluon exchange induces tt charge asymmetry
- reflected in y_{e^+} shape distortion (-15% to +10%corrections) and FB asymmetry

$$A_{\rm FB} = \frac{\sigma(y_{\rm e^+} > 0) - \sigma(y_{\rm e^+} < 0)}{\sigma(y_{\rm e^+} > 0) + \sigma(y_{\rm e^+} < 0)} = 0.035(2)$$

consistent with NWA [Bernreuther/Si '10]

[Butterworth et al. (2008)]

 $pp \to {
m WH} \to {
m Wbar b}$ search ($M_{
m H} \lesssim 130\,{
m GeV}$)

- huge QCD background suppressed with boosted Higgs strategy
- $ho_{\mathrm{T,bar{b}}} > 200\,\mathrm{GeV}$ and $ho_{\mathrm{T,jet,veto}} = 30\,\mathrm{GeV}$ yield $S/B \approx 1$ and $S/\sqrt{B} \approx 3\sigma$ with $30 \, {\rm fb}^{-1}$.

Suppression of dominant $W^+W^-b\bar{b}$ background

- 0.4% off-shell effects increase to ≥ 30% at LO.
- Strong $W^+W^-b\bar{b}i$ NLO emission is very sensitive to $p_{\rm T, jet, veto}$ and barely stable.

Full 2 \rightarrow 4 NLO crucial to control W⁺W⁻b \bar{b} !

[Butterworth et al. (2008)]

$$pp \to \mathrm{WH} \to \mathrm{Wb\bar{b}}$$
 search ($M_{\mathrm{H}} \lesssim 130\,\mathrm{GeV}$)

- huge QCD background suppressed with boosted Higgs strategy
- $p_{\mathrm{T,b\bar{b}}} > 200\,\mathrm{GeV}$ and $p_{\mathrm{T,jet,veto}} = 30\,\mathrm{GeV}$ yield $S/B \approx 1$ and $S/\sqrt{B} \approx 3\sigma$ with $30 \, \mathrm{fm}^{-1}$.

Suppression of dominant $W^+W^-b\bar{b}$ background

- 0.4% off-shell effects increase to $\gtrsim 30\%$.
- Strong $W^+W^-b\bar{b}i$ NLO emission is very sensitive to $p_{\rm T, jet, veto}$ and barely stable.

Full 2 \rightarrow 4 NLO crucial to control W⁺W⁻b \bar{b} !

Conclusions

NLO QCD calculation for $W^+W^-b\bar{b}$ production

- ullet precise description of $t \bar t$ production and decay
- including off-shell effects, non-resonant backgrounds and interferences

Inclusive cross section at the Tevatron (LHC)

- moderate corrections K=0.94 (1.27) and stable NLO predictions ($\delta\sigma/\sigma\simeq$ 9%)
- ullet quantitative assessment of finite-width effects $\lesssim \Gamma_{
 m t}/m_{
 m t}=0.8\%$

NLO corrections to differential distributions at the Tevatron and the LHC

- rich and non-trivial kinematic dependence
- ullet potentially large impact on acceptances and shape-dependent precision measurements (like $m_{
 m t}$)

Coming soon: Tuned comparison with NWA, effects of the off-shellness of W's, ...

Backup slides

Reduction of tensor integrals $-e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier '05]

(A) Space-time 4-dim (N > 5 prop.)

simultaneous prop. & rank reduction [Melrose '65; Denner/Dittmaier '02&'05; Binoth et. al. '05]

$$q + p_1 \qquad q + p_2$$

$$q \mid m_0 \qquad m_5$$

$$q + p_5$$

(B) Lorentz invariance ($N \le 4$ prop.)

reduction of rank (P) [Passarino/Veltman '79; Denner '93]

$$2(D+P-N-1) \ T_{00i_3...i_P}^{(P)} = \sum_{k=1}^{N-1} f_k \ T_{ki_3...i_P}^{(P-1)} + 2m_0^2 \ T_{i_3...i_P}^{(P-2)} + \text{lower-point}$$

$$\sum_{n=1}^{N-1} Z_{mn} \ T_{ni_2...i_P}^{(P)} = -2 \sum_{r=2}^{P} \delta_{mi_r} \ T_{00i_2...i_r...i_P}^{(P)} - f_m \ T_{i_2...i_P}^{(P-1)} + \text{lower-point}$$

inversion of Gram matrix $Z_{mn} = 2p_m p_n$ unstable when $det(Z) \rightarrow 0$

Reduction of tensor integrals $-e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier '05]

General and robust solution of instability problems iterative det(Z)-expansion (and various alternative methods)

$$\begin{split} &\tilde{X}_{0j}T_{i_{1}\dots i_{P}}^{(P)} &= \det(Z) \ T_{ji_{1}\dots i_{P}}^{(P+1)} + 2\sum_{n=1}^{N-1} \tilde{Z}_{jn}\sum_{r=1}^{P} \delta_{ni_{r}}T_{00i_{1}\dots i_{r}\dots i_{P}}^{(P+1)} + \text{lower-point} \\ &2\tilde{Z}_{kl}T_{00i_{2}\dots i_{P}}^{(P+1)} &= \left\{-\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \left[f_{n}f_{m}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right. \\ &\times T_{00i_{2}\dots i_{r}\dots i_{P}}^{(P)} + 4\sum_{\substack{r,s=2\\r\neq s}}^{P} \delta_{ni_{r}}\delta_{mi_{s}}T_{0000i_{2}\dots i_{r}\dots i_{s}\dots i_{P}}^{(P+1)}\right] \tilde{Z}_{(kn)(lm)} + \text{lower-point} \Big\} (D+1+P-N+\sum_{r=2}^{P} \tilde{\delta}_{i_{r}0})^{-1} \end{split}$$

First physical application up to tensor rank P=5

- ullet CPU cost of colour/helicity summed $gg o W^+W^-bar b$ loop amplitudes very low (450ms) similarly as for gg $\rightarrow t\bar{t}b\bar{b}$ (180 ms) where P=4
- $\sigma_{\rm NLO}$ with statistical accuracy of $\mathcal{O}(10^{-3})$ requires $\mathcal{O}(10^{8})$ events obtained within 5-10 days on single CPU
- Total CPU cost at LHC dominated by real and virtual gg-channel corrections.