Understanding and Proving the Expansion by Regions

Bernd Jantzen
RWTH Aachen University

I The strategy of regions
II Why does the method work?
III The general formalism
IV Non-commuting expansions
V Summary

Disclaimer: This talk is not a practical user's guide on learning how to expand by regions, but a demonstration of the method's correctness.

The strategy of regions

Starting point: (multi-)loop integral

 [no effective theory required]$$
\begin{aligned}
F= & \int d^{d} k_{1} \int d^{d} k_{2} \cdots \frac{1}{\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}} \times \\
& \times \frac{1}{\left(k_{1}+k_{2}+p_{2}\right)^{2}-m_{2}^{2}} \cdots
\end{aligned}
$$

- complicated function of internal masses m_{i} and kinematical parameters $p_{i}^{2}, p_{i} \cdot p_{j}$
- exact evaluation often hard or impossible

Exploit parameter hierarchies, e.g. large energies $Q \gg$ small masses m :
\hookrightarrow expand integral in small ratios $\frac{m^{2}}{Q^{2}}$
\hookrightarrow simplification achieved if expansion of integrand before integration

But:

\star loop-momentum components k_{i}^{μ} can take any values (large, small, mixed, ...)
\star naive expansions of integrand may generate new singularities
\hookrightarrow Need sophisticated methods of asymptotic expansions.

Simple example: large-momentum expansion
$F=\int \frac{D k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}$

$$
\left[\begin{array}{rl}
\int D k & \equiv \mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \int \frac{d^{d} k}{i \pi^{d / 2}} \\
d & =4-2 \epsilon
\end{array}\right.
$$

Large momentum $\left|p^{2}\right| \gg m^{2} \rightsquigarrow$ expand in $\frac{m^{2}}{p^{2}}$.
Integral is UV- and IR-finite, the exact result is known:

$$
\left[p^{2} \rightarrow p^{2}+i 0\right]
$$

$$
\begin{aligned}
F & =\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon) \\
& \xrightarrow[\text { expand }]{\longrightarrow} \frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)-\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{m^{2}}{p^{2}}\right)^{n}\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

Now assume that we could not calculate this integral exactly ...

Large-momentum expansion (2)

Large momentum $\left|p^{2}\right| \gg m^{2}$

$$
F=\int \frac{D k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

\hookrightarrow expand integrand before integration:

Expansion by regions

Beneke, Smirnov, Nucl. Phys. B 522, 321 (1998)
\hookrightarrow here 2 relevant regions:
[originating from integral, not d.o.f. in effective theory]

- hard $(h): k \sim p \Rightarrow \sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i=0}^{\infty}(1+i) \frac{\left(m^{2}\right)^{i}}{\left(k^{2}\right)^{2+i}}$
- $\operatorname{soft}(s): k \sim m \Rightarrow \sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}=\sum_{j_{1}, j_{2}=0}^{\infty} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{(-2 k \cdot p)^{j_{1}}\left(-k^{2}\right)^{j_{2}}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}}$
\Rightarrow Integrate each expanded term over the whole integration domain.
\Rightarrow Set scaleless integrals to zero (\rightsquigarrow like in dimensional regularization).

Leading-order contributions:

- hard: $F_{0}^{(h)}=\int \frac{D k}{(k+p)^{2}\left(k^{2}\right)^{2}}=\frac{1}{p^{2}}\left(-\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon} \rightsquigarrow$ IR-singular!
- soft: $F_{0}^{(s)}=\int \frac{D k}{p^{2}\left(k^{2}-m^{2}\right)^{2}}=\frac{1}{p^{2}}\left(\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)\left(\frac{\mu^{2}}{m^{2}}\right)^{\epsilon} \rightsquigarrow U V$-singular!
\hookrightarrow Contributions are manifestly homogeneous in the expansion parameter $\frac{m^{2}}{p^{2}}$.

Large-momentum expansion (3)

$$
F=\int \frac{D k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

Leading-order contributions:

- hard: $F_{0}^{(h)}=\frac{1}{p^{2}}\left[-\frac{1}{\epsilon}+\ln \left(\frac{-p^{2}}{\mu^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ IR-singular!
- soft: $F_{0}^{(s)}=\frac{1}{p^{2}}\left[\frac{1}{\epsilon}+\ln \left(\frac{\mu^{2}}{m^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ UV-singular!
\hookrightarrow Singularities are cancelled in the sum of all contributions, exact result approximated:

$$
F_{0}=F_{0}^{(h)}+F_{0}^{(s)}=\frac{1}{p^{2}} \ln \left(\frac{-p^{2}}{m^{2}}\right)+\mathcal{O}(\epsilon)=F+\mathcal{O}\left(\frac{m^{2}}{\left(p^{2}\right)^{2}}\right)
$$

Expand to all orders in $\frac{m^{2}}{p^{2}}$:

$$
\left[(\alpha)_{n}=\Gamma(\alpha+n) / \Gamma(\alpha)\right]
$$

$$
\begin{aligned}
& F^{(h)}=\frac{1}{p^{2}} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{(-\epsilon) \Gamma(1-2 \epsilon)}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon} \sum_{i=0}^{\infty} \frac{(2 \epsilon)_{i}}{i!}\left(\frac{m^{2}}{p^{2}}\right)^{i}=F_{0}^{(h)}+\frac{2}{p^{2}} \ln \left(1-\frac{m^{2}}{p^{2}}\right)+\mathcal{O}(\epsilon) \\
& F^{(s)}=\frac{1}{p^{2}} e^{\epsilon \gamma_{E}} \Gamma(\epsilon)\left(\frac{\mu^{2}}{m^{2}}\right)^{\epsilon} \sum_{j=0}^{\infty} \frac{(\epsilon)_{j}}{(1-\epsilon)_{j}}\left(\frac{m^{2}}{p^{2}}\right)^{j}=F_{0}^{(s)}-\frac{1}{p^{2}} \ln \left(1-\frac{m^{2}}{p^{2}}\right)+\mathcal{O}(\epsilon) \\
& \hookrightarrow F=F^{(h)}+F^{(s)}=\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon) \quad \checkmark
\end{aligned}
$$

\Rightarrow Full result F exactly reproduced.

"Real-life" example

The expansion by regions has been applied to many complicated loop integrals.

Example:
2-loop vertex integral in the high-energy limit
$Q^{2} \gg m_{t}^{2} \rightsquigarrow 9$ relevant regions: \quad [labelled " $\left(k_{1}-k_{2}\right)$ "]
$(h-h),(1 c-h),(h-2 c),(1 c-1 c),(1 c-2 c)$, $(2 c-2 c),(u s-2 c),(1 c-2 u c),(2 u c-2 u c)$
\hookrightarrow Next-to-leading-logarithmic result obtained and cross-checked with other methods.

Questions: Why does this expansion by regions work?

- Large-momentum example: Didn't we double-count every $k \in \mathbb{R}^{d}$ when replacing $\int D k \rightarrow \int D k T_{0}^{(h)}+\int D k T_{0}^{(s)}$?
- What ensures the cancellation of singularities? (IR $\leftrightarrow \mathrm{UV}$!)
- How do we know that the chosen set of regions is complete?

II Why does the method work?

Idea based on a 1-dimensional example from M. Beneke in the book Smirnov, Applied Asymptotic Expansions In Momenta And Masses

Back to the large-momentum example

Let us show step by step how the expansions reproduce the full result.

The expansions $\sum_{i} T_{i}^{(h)}, \sum_{j} T_{j}^{(s)}$ converge absolutely within domains D_{h}, D_{s} :
(h): $\frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}$ within $D_{h}=\left\{k \in \mathbb{R}^{d}| | k^{2} \mid \geq \Lambda^{2}\right\}$,
(s): $\frac{1}{(k+p)^{2}}=\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}$ within $D_{s}=\left\{k \in \mathbb{R}^{d}| | k^{2} \mid<\Lambda^{2}\right\}$,
with $m^{2} \ll \Lambda^{2} \ll\left|p^{2}\right| \rightsquigarrow D_{h} \cup D_{s}=\mathbb{R}^{d}, D_{h} \cap D_{s}=\emptyset$.
The expansions commute with integrals restricted to the corresponding domains:
$F=\int_{k \in \mathbb{R}^{d}} D k \underbrace{\frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}}_{I}=\sum_{i} \int_{k \in D_{h}} D k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} D k T_{j}^{(s)} I$

Continue transforming the expression for the full integral:

$$
\begin{aligned}
F & =\int_{k \in \mathbb{R}^{d}} D k \underbrace{\frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}}_{I}=\sum_{i} \int_{k \in D_{h}} D k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} D k T_{j}^{(s)} I \\
& =\sum_{i}\left(\int_{k \in \mathbb{R}^{d}} D k T_{i}^{(h)} I-\sum_{j} \int_{k \in D_{s}} D k T_{j}^{(s)} T_{i}^{(h)} I\right)+\sum_{j}\left(\int_{k \in \mathbb{R}^{d}} D k T_{j}^{(s)} I-\sum_{i} \int_{k \in D_{h}} D k T_{i}^{(h)} T_{j}^{(s)} I\right)
\end{aligned}
$$

The expansions commute: $T_{i}^{(h)} T_{j}^{(s)} I=T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i, j}^{(h, s)} I$
\Rightarrow Identity: $F=\underbrace{\sum_{i} \int D k T_{i}^{(h)} I}_{\boldsymbol{F}^{(\boldsymbol{h})}}+\underbrace{\sum_{j} \int D k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int D k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(\boldsymbol{h}, \boldsymbol{s})}}$
All terms integrated over the whole integration domain \mathbb{R}^{d} as prescribed for the expanding by regions \Rightarrow location of boundary Λ between D_{h}, D_{s} irrelevant.

Identity: $F=\underbrace{\sum_{i} \int D k T_{i}^{(h)} I}_{\boldsymbol{F}^{\boldsymbol{h})}}+\underbrace{\sum_{j} \int D k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int D k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(\boldsymbol{h}, \boldsymbol{s})}}$

Additional overlap contribution $\boldsymbol{F}^{(h, s)}$?

$$
F^{(h, s)}=\sum_{i=0}^{\infty}(1+i) \sum_{j_{1}, j_{2}=0}^{\infty}(-1)^{j_{2}} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{\left(m^{2}\right)^{i}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}} \int D k \frac{(-2 k \cdot p)^{j_{1}}}{\left(k^{2}\right)^{2+i-j_{2}}}=0 \quad \text { scaleless! }
$$

[Actually $\int \frac{D k}{\left(k^{2}\right)^{2}}=\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathbb{R}}}$ cancels corresponding singularities in $F^{(h)}$ and $F^{(s)}$.]
$\hookrightarrow \boldsymbol{F}=\boldsymbol{F}^{(\boldsymbol{h})}+\boldsymbol{F}^{(s)}$ as found before.
But now this identity has been obtained without evaluating $F, F^{(h)}, F^{(s)}$!

Example with 3 regions: threshold expansion for heavy-particle pair production

Regions analyzed in Beneke, Smirnov, NPB 522, 321 (1998)
Center-of-mass system: $\left(q^{\mu}\right)=\left(q_{0}, \overrightarrow{0}\right),\left(p^{\mu}\right)=(0, \vec{p})$
Close to threshold: $q^{2} \approx(2 m)^{2} \Rightarrow q^{2} \gg\left|p^{2}\right|$ or $q_{0} \gg|\vec{p}|$

$$
F=\int \frac{D k}{\left(k^{2}+q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right)\left(k^{2}-q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right) k^{2}}
$$

Relevant regions:

- hard $(h): k_{0},|\vec{k}| \sim q_{0} \Rightarrow$ expand $\sum_{j} T_{j}^{(h)}$ in $D_{h}=\left\{k \in \mathbb{R}^{d}| | k_{0}|\gg| \vec{p} \mid\right.$ or $\left.|\vec{k}| \gg|\vec{p}|\right\}$
- $\operatorname{soft}(s): k_{0},|\vec{k}| \sim|\vec{p}| \Rightarrow$ expand $\sum_{j} T_{j}^{(s)}$ in $D_{s}=\left\{k \in \mathbb{R}^{d}| | \vec{k}|\lesssim| k_{0}|\lesssim| \vec{p} \mid\right\}$
- potential $(p): k_{0} \sim \frac{\vec{p}^{2}}{q_{0}},|\vec{k}| \sim|\vec{p}| \Rightarrow \sum_{j} T_{j}^{(p)}$ in $D_{p}=\left\{k \in \mathbb{R}^{d}| | k_{0}|\ll| \vec{k}|\lesssim| \vec{p} \mid\right\}$ [no explicit boundaries needed]
$\hookrightarrow D_{h} \cup D_{s} \cup D_{p}=\mathbb{R}^{d}, \quad D_{h} \cap D_{s}=D_{h} \cap D_{p}=D_{s} \cap D_{p}=\emptyset$
\hookrightarrow The expansions $T^{(h)}, T^{(s)}, T^{(p)}$ commute with each other.

Threshold expansion (2)

$$
F=\int \frac{D k}{\left(k^{2}+q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right)\left(k^{2}-q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right) k^{2}}
$$

Similar transformations as for the large-momentum example
 yield the following identity:

$$
F=F^{(h)}+\underbrace{F^{(s)}}_{=0}+F^{(p)}-(\underbrace{F^{(h, s)}}_{=0}+\underbrace{F^{(h, p)}}_{=0}+\underbrace{F^{(s, p)}}_{=0})+\underbrace{F^{(h, s, p)}}_{=0 \text { (scaleless) }}
$$

with

$$
\begin{aligned}
F^{(h)} & =-\frac{2 e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{q^{2}}\left(\frac{4 \mu^{2}}{q^{2}}\right)^{\epsilon} \sum_{j=0}^{\infty} \frac{(1+\epsilon)_{j}}{j!(1+2 \epsilon+2 j)}\left(-\frac{4 p^{2}}{q^{2}}\right)^{j} \\
F^{(p)} & =\frac{e^{\epsilon \gamma_{E}} \Gamma\left(\frac{1}{2}+\epsilon\right) \sqrt{\pi}}{2 \epsilon \sqrt{q^{2}\left(p^{2}-i 0\right)}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon} \quad \text { [higher orders are scaleless] }
\end{aligned}
$$

Exact result reproduced:

$$
F^{(h)}+F^{(p)}=F=\frac{e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{2 p^{2}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon}{ }_{2} F_{1}\left(\frac{1}{2}, 1+\epsilon ; \frac{3}{2} ;-\frac{q^{2}}{4 p^{2}}-i 0\right)
$$

III The general formalism

The identities obtained for the previous examples are generally valid, under some conditions:

Consider

- a (multiple) integral $F=\int D k I$ over the domain D (e.g. $D=\mathbb{R}^{d}$),
- a set of N regions $R=\left\{x_{1}, \ldots, x_{N}\right\}$,
- for each region $x \in R$ an expansion $T^{(x)}=\sum_{j} T_{j}^{(x)}$ which converges absolutely in the domain $D_{x} \subset D$.

Conditions:

- $\bigcup_{x \in R} D_{x}=D, \quad D_{x} \cap D_{x^{\prime}}=\emptyset \forall x \neq x^{\prime}$
- the expansions commute: $T^{(x)} T^{\left(x^{\prime}\right)} I=T^{\left(x^{\prime}\right)} T^{(x)} I \equiv T^{\left(x, x^{\prime}\right)} I$
- \exists regularization for singularities, e.g. dimensional (+ analytic) reg.
\Rightarrow The integral expression can be transformed as in the previous examples.

The general formalism (2)

Under the above conditions, the following identity holds:

$$
F=\sum_{x_{1}^{\prime} \in R} F^{\left(x_{1}^{\prime}\right)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots-(-1)^{N} F^{\left(x_{1}, \ldots, x_{N}\right)}
$$

$$
\left[F^{(x, \ldots)} \equiv \sum_{j, \ldots} \int D k T_{j, \ldots}^{(x, \ldots)} I\right]
$$

Comments

- This identity is exact when the expansions are summed to all orders.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions \& regularization are chosen such that multiple expansions $F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}(n \geq 2)$ are scaleless and vanish.
[OK if each $F^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions"). They appear e.g. when avoiding analytic regularization in SCET.

IV Non-commuting expansions

Cannot always choose expansions which commute with each other.

Example: Sudakov form factor

Sudakov limit: $-\left(p_{1}-p_{2}\right)^{2}=Q^{2} \gg m^{2}$

$$
F=\int \frac{D k}{\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{+}\right)^{1+\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{-}\right)^{1-\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}-m^{2}\right)}
$$

[light-cone coordinates: $2 p_{1,2} \cdot k=Q k^{ \pm}, p_{1,2} \cdot k_{\perp}=0$]

Regions \& domains:

- hard $(h): k^{+}, k^{-},\left|\vec{k}_{\perp}\right| \sim Q \Rightarrow D_{h}=\left\{k \in \mathbb{R}^{d} \mid \vec{k}_{\perp}^{2} \gg m^{2}\right\}$
- 1-collinear ($1 c$): $k^{+} \sim \frac{m^{2}}{Q}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$
- 2-collinear (2c): $k^{+} \sim Q, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- Glauber $(g): k^{+}, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- collinear plane $(c p): k^{+}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$
\hookrightarrow "artificial" region to ensure $\cup_{x} D_{x}=\mathbb{R}^{d}$
[No soft region needed: $T^{(s)} \equiv T^{(1 c)} T^{(2 c)}$]

Most expansions commute, but $T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)}$!

Sudakov form factor (2)

$T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)} \rightsquigarrow$ Construct identity avoiding combination of (g) and $(c p)$:

$$
\begin{aligned}
F & =F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)} \\
& -\left(F^{(h, 1 c)}+F^{(h, 2 c)}+F^{(h, g)}+F^{(h, c p)}+F^{(1 c, 2 c)}+F^{(1 c, g)}+F^{(1 c, c p)}+F^{(2 c, g)}+F^{(2 c, c p)}\right) \\
& +F^{(h, 1 c, 2 c)}+F^{(h, 1 c, g)}+F^{(h, 1 c, c p)}+F^{(h, 2 c, g)}+F^{(h, 2 c, c p)}+F^{(1 c, 2 c, g)}+F^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)+F_{g \rightarrow c p}^{\text {extra }}+F_{c p \rightarrow g}^{\text {extra }}
\end{aligned}
$$

Extra terms:

- $F_{g \rightarrow c p}^{\text {extra }}$ involves $T^{(c p)} T^{(g)}$ integrated over $k \in D_{c p}$
- $F_{c p \rightarrow g}^{\text {extra }}$ involves $T^{(g)} T^{(c p)}$ integrated over $k \in D_{g}$

Both extra terms cancel at the integrand level.
\hookrightarrow They must do so \rightsquigarrow otherwise dependence on boundaries of $D_{g}, D_{c p}$.

Usual terms:

- no combination of (g) and ($c p$)
- all overlap contributions and $F^{(g)}, F^{(c p)}$ are scaleless (with analytic regularization)

Sudakov form factor (3)

$$
F=\int \frac{D k}{\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{+}\right)^{1+\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{-}\right)^{1-\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}-m^{2}\right)}
$$

Omitting scaleless contributions and vanishing extra terms:

$$
F=F^{(h)}+F^{(1 c)}+F^{(2 c)}
$$

Regions explicitly evaluated to all orders in $\frac{m^{2}}{Q^{2}}$:
[omitting $\mathcal{O}(\delta)$ and $\mathcal{O}(\epsilon)$]

$$
\begin{aligned}
F^{(h)}= & -\frac{1}{Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{\frac{1}{\epsilon^{2}}-\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)+\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)-2 \operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)-\frac{\pi^{2}}{12}\right\} \\
F^{(1 c)}, F^{(2 c)}=- & \frac{1}{2 Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{ \pm \frac{1}{\delta}\left[\frac{1}{\epsilon}+\ln \frac{Q^{2}}{m^{2}}-\ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right]-\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right. \\
& \left.+\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)+\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{5}{12} \pi^{2}\right\}
\end{aligned}
$$

$\hookrightarrow F^{(1 c)}$ and $F^{(2 c)}$ are not separately finite for $\delta \rightarrow 0$, but their sum is.

Compare to exact result:

$$
F=-\frac{1}{Q^{2}}\left\{\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{\pi^{2}}{3}\right\}
$$

Last example: forward scattering with small-momentum exchange

Two light-like particles with large center-of-mass energy exchange a small momentum r :
$p_{1}^{2}=\left(p_{1}-r\right)^{2}=p_{2}^{2}=\left(p_{2}+r\right)^{2}=0$

$$
\left(p_{1}+p_{2}\right)^{2}=Q^{2} \gg \vec{r}_{\perp}^{2}, \quad r^{ \pm} \approx \mp \frac{\vec{r}_{\perp}^{2}}{Q}
$$

Symmetrize integral under $k \leftrightarrow r-k$ \hookrightarrow avoids divergences at $\left|k^{ \pm}\right| \rightarrow \infty$ under expansion.

$$
\begin{aligned}
F & =\frac{1}{2} \int \frac{D k}{k^{2}(r-k)^{2}}\left(\frac{1}{\left(\left(p_{1}-k\right)^{2}\right)^{1+\delta}}+\frac{1}{\left(\left(p_{1}-r+k\right)^{2}\right)^{1+\delta}}\right) \\
& \times\left(\frac{1}{\left(\left(p_{2}+k\right)^{2}\right)^{1-\delta}}+\frac{1}{\left(\left(p_{2}+r-k\right)^{2}\right)^{1-\delta}}\right)
\end{aligned}
$$

Regions: same as for Sudakov form factor (with scaling $m \rightarrow\left|\vec{r}_{\perp}\right|$), Domains: similar (but more involved for $\left|\vec{k}_{\perp}\right| \gg\left|\vec{r}_{\perp}\right|$)

Forward scattering (2)

Same identity as for Sudakov form factor:

$$
\begin{aligned}
F & =F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)} \\
& -\left(F^{(h, 1 c)}+F^{(h, 2 c)}+F^{(h, g)}+F^{(h, c p)}+F^{(1 c, 2 c)}+F^{(1 c, g)}+F^{(1 c, c p)}+F^{(2 c, g)}+F^{(2 c, c p)}\right) \\
& +F^{(h, 1 c, 2 c)}+F^{(h, 1 c, g)}+F^{(h, 1 c, c p)}+F^{(h, 2 c, g)}+F^{(h, 2 c, c p)}+F^{(1 c, 2 c, g)}+F^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)
\end{aligned}
$$

With analytic regulator $\boldsymbol{\delta} \rightarrow \mathbf{0}: F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)} \quad\left[F_{0}^{(h)}\right.$ suppressed, others scaleless]

$$
F_{0}^{(1 c)}=F_{0}^{(2 c)}=\frac{i \pi}{2 Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)}
$$

Without analytic regularization $(\delta=0)$:
[all terms are still well-defined]

$$
\begin{gathered}
F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)}+F_{0}^{(g)}-\left(F_{0}^{(1 c, 2 c)}+F_{0}^{(1 c, g)}+F_{0}^{(2 c, g)}\right)+F_{0}^{(1 c, 2 c, g)} \\
F_{0}^{(x, \ldots)}=\frac{i \pi}{Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)} \quad \forall x, \ldots \in\{1 c, 2 c, g\}
\end{gathered}
$$

\hookrightarrow consistent results independent of regularization: $\frac{1}{2}+\frac{1}{2}=1+1+1-(1+1+1)+1 \checkmark$
\hookrightarrow agreement with leading-order expansion of full result

V Summary

Expansion by regions for general integrals

- conditions for regions (+ corresponding expansions \& domains) established
- identity proven \rightsquigarrow relates exact integral to sum of expanded terms
- this identity includes overlap contributions:

$$
\begin{array}{|l}
\hline F=\sum_{x_{1}^{\prime} \in R} F^{\left(x_{1}^{\prime}\right)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots-(-1)^{N} F^{\left(x_{1}, \ldots, x_{N}\right)} \\
\hline
\end{array}
$$

\hookrightarrow valid independent of the choice of regularization

- overlap contributions can be scaleless or relevant (depending on regularization)
- successful application to several examples (setup \& check of conditions, evaluation of regions to all orders, comparison to exact result)

Non-commuting expansions

- extra terms vanish at the integrand level
- generalized identity without overlap combinations of non-commuting expansions

Practical note: how to find the relevant regions

- Look where the propagators have poles:
\star Large-momentum example: $(k+p)^{2}=0$ at $k \sim p, \quad k^{2}-m^{2}=0$ at $k \sim m$.
\star Close the integration contour of one component (e.g. $k^{0}, k^{ \pm}$). For all residues investigate the scaling of the components.
- Use Mellin-Barnes (MB) representations:

1. Evaluate the full (scalar) integral for general propagator powers n_{i} in terms of multiple MB integrals.
2. Close $M B$ contours involving the expansion parameter and extract the leading contributions.
3. The individual terms can be identified with corresponding regions by their homogeneous scaling with the expansion parameter depending on d and n_{i}.
[A subsequent expansion by regions often yields simpler expressions for the contributions.]

- Try all possible regions that you can imagine ...

If a region does not contribute, its integrals are scaleless.

- When a region is missing, the total result is often (but not always) more singular than it should be. \rightsquigarrow Important cross-check, but no guarantee!

