

Belle Results at $\Upsilon(5S)$

Sevda Esen University of Cincinnati

Outline

- \succ The Belle Experiment
 - \succ Physics at $\Upsilon(5S)$
 - \succ CP-eigenstate B_s^0 decays
 - \succ Bottomonia searches
 - \succ Summary

KEKB Collider and Belle Detector

Integrated luminosity of B factories

S.Esen

beyond $\Upsilon(4S) \Rightarrow \Upsilon(5S)$ $\succ B^{(*)}B^{(*)}(\pi\pi), B_s^{(*)}\bar{B_s}^{(*)}, \Upsilon(nS)\pi\pi, ...$ $\succ above B_s^*\bar{B_s}^* threshold :$ 14 million B_s^0 at Belle \succ Bottomonia above $B^*\bar{B}$ threshold

B_s^0 production fraction:

$$\begin{aligned} \mathscr{B}(\Upsilon(5S) \to D_s X)/2 &= f_s \times \mathscr{B}(B_s \to D_s X) + (1 - f_s) \times \mathscr{B}(B \to D_s X) \\ & \text{we measure} \\ & \text{with } \Upsilon(5S) \text{ data} \end{aligned} \qquad \begin{array}{c} (92 \pm 11)\% \\ & \text{Model-dependent} \end{array} \qquad \begin{array}{c} (8.3 \pm 0.7)\% \\ & \text{BaBar} @ \Upsilon(4S) \end{aligned}$$

≻ Full reconstruction using observables :

- Beam-constrained mass: $M_{bc} = \sqrt{E_b^{*2} p_{B_s^0}^{*2}}$ - Energy difference: $\Delta E = E_{B_c^0}^* - E_b^*$
- $\succ 3 \text{ production modes:}$ $\Upsilon(5S) \rightarrow B_s^* \bar{B}_s^*, B_s^* \bar{B}_s \text{ and } B_s \bar{B}_s$ $f_{B_s^* \bar{B}_s^*} = (87.0 \pm 1.7)\% \text{ measured } w/B_s \rightarrow Ds\pi$ $\succ B_s^* \rightarrow B_s^0 \gamma$

low momentum γ is not reconstructed

\succ *Motivation:*

- Promising mode for LHCb to measure β_s , the CP-violating phase in the B mixing
- pure CP-odd eigenstate: no angular analysis needed

Stone et al., arXiv:0909.5442 (2009)

- \succ Event selection
 - –full reconstruction $J/\psi
 ightarrow e^+e^-$ or $\mu^+\mu^-$ modes
 - Two f_0 resonances: $f_0(980)$ and $f_0(1370)$ with $f_0
 ightarrow \pi^+\pi^-$
 - select B_s^0 with M_{bc} ; fit $M_{\pi\pi}$ and ΔE distributions
 - Backgrounds from continuum and other J/ψ modes.

≻ Results:

Observation of $63^{+16}_{-10} B^0_s \rightarrow J/\psi f_0(980)$ events (8.4 σ incl. syst.) First evidence for $19^{+6}_{-8} B^0_s \rightarrow J/\psi f_0(1370)$ events (4.2 σ incl. syst.)

- $\succ \mathscr{B}(B^0_s \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-) = [1.16^{+0.31}_{-0.19}(stat.)^{+0.15}_{-0.17}(syst.)^{+0.26}_{-0.18}(N(B^0_s))] \times 10^{-4} \\ \mathscr{B}(B^0_s \to J/\psi f_0(1370); f_0(1370) \to \pi^+\pi^-) = [0.34^{+0.11}_{-0.14}(stat.)^{+0.03}_{-0.02}(syst.)^{+0.08}_{-0.05}(N(B^0_s))] \times 10^{-4}$
- ≻ Comparable results with LHCb [PLB 698, 115], CDF [arXiv: 1106.3682] and D0 [conf. note 6152]

- \succ two simultaneous fits to $\Delta E M_{bc}$ distributions for η sub-modes
- \succ Branching Fraction = $(5.11 \pm 0.50(stat.) \pm 0.35(syst.) \pm 0.68(fs)) \times 10^{-4}$

Brookhaven Forum / October 19-21, 2011

$$\succ$$
 CP-even final states

 $\succ D_s^+ D_s^-$ pure CP-even $\succ D_s^* D_s^{(*)}$ predominantly CP-even

 \succ In the heavy quark limit, while $(m_b - 2m_c) \rightarrow 0$ and $N_c \rightarrow \infty$

 $\succ b \rightarrow c\bar{c}s$ processes contribute constructively to $\Delta\Gamma_s$ $\succ \Gamma[B_s^0(CP+) \rightarrow D_s^{(*)-}D_s^{(*)+}]$ saturates $\Delta\Gamma_s^{CP}$

 \succ assuming negligible CP violation, we can estimate $\Delta\Gamma_s/\Gamma_s$

$$\frac{\Delta\Gamma_s}{\Gamma_s} = \frac{2\mathscr{B}(B_s^0 \to D_s^{(*)-} D_s^{(*)+})}{1 - \mathscr{B}(B_s^0 \to D_s^{(*)-} D_s^{(*)+})}$$

Aleksan et. al., PLB 316, 567 (1993), Dunietz et. al., PRD 63, 114015 (2001)

some theoretical uncertainty $\succ \succ 3$ -body $D_s D_s X$ and $D_{sJ} D_s$ final states are not included $\succ \succ D_s^{*+} D_s^{*-}$ modes may have a CP-odd component \Rightarrow we will measure this

\succ Event selection:

- reconstruct $si\chi D_s^-$ decays: $\phi \pi^-, K_s K^-, K^{*0} K^-, \phi \rho^-, K^{*-} K_s^+, K^{*0} K^{*-}$ - simultaneous fit of three B_s modes - 2D unbinned ML fit to ΔE and M_{bc}

 \succ *Results:*

Y (events)	B (%)
$33.1_{-5.4}^{+6.0}$	$0.58^{+0.11}_{-0.09}\pm 0.13$
$44.5^{+5.8}_{-5.5}$	$1.8 \pm 0.2 \pm 0.40$
$24.4_{-3.8}^{+4.1}$	$1.98 \pm 0.3 \pm 0.5$
$102.0^{+9.3}_{-8.6}$	$4.3 \pm 0.4 \pm 1.0$
$(9.0 \pm 0.9 \pm 2.2)$ %	
	$\begin{array}{r} \mathcal{Y} (events) \\ \hline 33.1^{+6.0}_{-5.4} \\ 44.5^{+5.8}_{-5.5} \\ 24.4^{+4.1}_{-3.8} \\ 102.0^{+9.3}_{-8.6} \\ \hline (9.0 \pm 0.9 \pm 2.2) \% \end{array}$

 $PDG: 9.2^{+5.1}_{-5.4}\%$ (w/o LHCb $J/\psi\phi$ mesurement)

signal region projections $\Delta E[-0.1, 0.0]$ and $M_{bc}[5.4, 5.43]$

$$egin{array}{lll} 4\,\mathcal{B}(B_s
ightarrow D_s D_s) &= \left(rac{\Delta\Gamma}{\cosarphi}
ight) \left[rac{1+\cosarphi}{1+\Delta\Gamma/2} \,+\, rac{1-\cosarphi}{1-\Delta\Gamma/2}
ight] \ & ext{ where } arphi \,=\, \mathrm{Arg}\left(rac{M_{12}}{\Gamma_{12}}
ight) \qquad \mathcal{D} \end{array}$$

Dunietz, Fleischer, Nierste, PRD 63, 114015 (2001)

Motivation

- \succ seek/study h_b
- \succ search for b-versions of charmonium-like X, Y, Z states
- \succ origin of anomalous $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$ K.F. Chen et al. (Belle) PRL 100, 112001 (2008);

PRD 82, 091106(R) (2010)

First Observation of $h_b(nP)$ arXiv:1103.3419

Yield, 10^3 Mass, MeV/c^2 Significance \succ Use missing mass method: $\Upsilon(1S)$ $105.2 \pm 5.8 \pm 3.0$ $9459.4 \pm 0.5 \pm 1.0$ 18.2σ $9898.3 \pm 1.1^{+1.0}_{-1.1}$ $h_b(1P)$ $50.4 \pm 7.8^{+4.5}_{-9.1}$ 6.2σ $M_{h_b} = MM(\pi^+\pi^-) = \sqrt{(P_{\Upsilon(5S)} - P_{\pi^+\pi^-})^2}$ $3S \rightarrow 1S$ 9973.01 56 ± 19 2.9σ $\Upsilon(2S)$ $143.5 \pm 8.7 \pm 6.8 \ 10022.3 \pm 0.4 \pm 1.0$ 16.6σ $\succ \pi^{\pm}$: good track quality $\Upsilon(1D)$ 10166.2 ± 2.6 2.4σ 22.0 ± 7.8 $84.4 \pm 6.8^{+23.}_{-10.}$ $10259.8 \pm 0.6^{+1.4}_{-1.0}$ consistent PID information $h_b(2P)$ 12.4σ $2S \to 1S$ $151.7 \pm 9.7^{+9.0}_{-20}$ $10304.6 \pm 0.6 \pm 1.0$ 15.7σ $\Upsilon(3S)$ $45.6 \pm 5.2 \pm 5.1 \ 10356.7 \pm 0.9 \pm 1.1$ 8.5σ

 $\succ Masses are in very good agreement with CoG of \chi_b states$ $h_b(1P): \Delta M = 1.6 \pm 1.5 MeV/c^2$ $h_b(2P): \Delta M = 0.5^{+1.6}_{-1.2} MeV/c^2$

Consistent with hyperfine interaction

 $\succ \text{ Ratio of production rate :} \\ \frac{\Gamma(\Upsilon(5S) \rightarrow h_b(1P)\pi^+\pi^-}{\Gamma(\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^+\pi^-)} = 0.46 \pm 0.08^{+0.07}_{-0.12} \\ \frac{\Gamma(\Upsilon(5S) \rightarrow h_b(2P)\pi^+\pi^-}{\Gamma(\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^+\pi^-)} = 0.77 \pm 0.08^{+0.22}_{-0.17} \\ \text{Process with spin flip is not suppressed in } \Upsilon(5S) \text{ as expected}$

 $\succ \text{ search for } h_b(1P) \text{ at } \Upsilon(4S):$ $\frac{\sigma(e^+e^- \to h_b(1P)\pi^+\pi^-)@\Upsilon(4S)}{\sigma(e^+e^- \to h_b(1P)\pi^+\pi^-)@\Upsilon(5S)} < 0.28(90\% CL)$ $\Upsilon(4S) \text{ decay to } h_b \text{ is not enhanced}$

$\Rightarrow h_b$ through exotic mechanism?

- \succ Inspect the mass of $h_b \pi$: look at the missing mass of a single pion
- \succ Masses, widths and relative amplitudes from five channels are consistent

- \succ Relative phases are swapped for final states $\Upsilon(\approx 0^{\circ})$ and $h_b(\approx 180^{\circ})$ explains why $\Upsilon(5S) \rightarrow h_b \pi \pi$ are not suppressed compare to $\Upsilon \pi \pi$
- \succ Masses of Z_b are close to $B^*B^{(*)}$ thresholds

$$\succ \text{ Expected decays of } h_b$$

$$h_b(1P) \rightarrow ggg(57\%), \eta_b(1S)\gamma(41\%), \gamma gg(2\%)$$

$$h_b(2P) \rightarrow ggg(63\%), \eta_b(1S)\gamma(13\%), \eta_b(2S)\gamma(19\%), \gamma gg(2\%)$$

\succ method:

$$\begin{array}{l} -\operatorname{reconstruct} \pi^{+}, \pi^{-} \text{ and } \gamma \text{ from decay chain:} \\ \Upsilon(5S) \to Z_{b}^{+}\pi^{-}, Z_{b}^{+} \to h_{b}(1P)\pi^{+}, h_{b}(1P) \to \eta_{b}(1S)\gamma \\ -\operatorname{fit} MM(\pi^{+}\pi^{-}) \text{ spectra in } \Delta M_{miss}(\pi^{+}\pi^{-}\gamma) \text{ bins} \\ \Delta M_{miss}(\pi^{+}\pi^{-}\gamma) = MM(\pi^{+}\pi^{-}\gamma) - MM(\pi^{+}\pi^{-}) + M(h_{b}) \\ -\operatorname{Require intermediate} Z_{b}: \\ 10.59 < MM(\pi) < 10.67 \text{ GeV} \\ \operatorname{results:} \\ M(\eta_{b}(1S)) = 9401.0 \pm 1.9^{+1.4}_{-2.4} \text{ MeV}/c^{2} \\ \Gamma(\eta_{b}(1S)) = 12.4^{+5.5+11.5}_{-4.6-3.4} \text{ MeV} \\ \mathscr{B}(h_{b}(1P) \to \eta_{b}(1S)\gamma) = 49.8 \pm 6.8^{+10.9}_{-5.2} \% \end{array}$$

 \succ

- \succ Belle collected 121.4 fb^{-1} data at the $\Upsilon(5S)$
- \succ Observation of $B_s^0 \rightarrow J/\Psi f_0(980)$ and first evidence of $B_s^0 \rightarrow J/\Psi f_0(1370)$
- \succ improved branching fraction measurement of $B^0_s
 ightarrow D^{(*)}_s D^{(*)}_s$
 - constraint on $\Delta\Gamma_s/\Gamma_s$
- \succ First observation of two $b\bar{b}$ states: $h_b(1P)$ and $h_b(2P)$
 - masses are consistent with expectation (COG) arXiv:1103.3419
- \succ First observation of two charged bottomonia resonances
 - seen in 5 final states with consistent parameters
 - masses are close B^*B and B^*B^*
- \succ First observation of $h_b(1P) \rightarrow \eta_b(1S)\gamma$
 - first measurement of $\eta_b(1S)$ width
 - BF, mass, width in agreement with theoretical expectations
- \succ more is coming!

BACKUP

- $\succ b\bar{b}$ states with spin 0, $\mathcal{L}=1$, $J^{PC}=1^{+-}$ $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ decays should be suppressed due to spin-flip
- \succ expected mass (CoG of χ_{bJ}) : $M_{h_b} \approx (M_{\chi_{b0}} + 3M_{\chi_{b1}} + 5M_{\chi_{b2}})/9$ $\Delta M_{HF} \Rightarrow$ test of hyperfine interaction
- \succ Radiative transition to $\eta_b(nS)$
- \succ Evidence from BaBar (arXiv:1102.4565) $\Upsilon(3S) \rightarrow \pi^0 h(1P) \rightarrow \pi^0 \gamma \eta_b(1S)$

Events/(20 MeV/c²)

Observation of $B_s \rightarrow J/\psi f_0(980)$ First evidence of $B_s \rightarrow J/\psi f_0(1370)$

