LHC Sensitivity to Wbb Production via Double Parton Scattering at 7 TeV

Seth Quackenbush Argonne National Laboratory

with E. Berger, C. Jackson, and G. Shaughnessy arXiv: 1107.3150, accepted to PRD

Outline

- What is Double Parton Scattering?
- Motivation
- Analysis details and backgrounds
- How to tell DPS from SPS
- Results
- Summary

What is Double Parton Scattering?

- Proton made of many partons
- More than one can scatter when struck
- Double parton scattering (DPS): 2 partons from one proton on 2 partons from another (2 nearly independent high scale interactions)

What is Double Parton Scattering?

DPS

Double parton distributions

- Assuming some kind of factorization holds,

$$
\begin{aligned}
& d \sigma_{p p}^{\text {DPS }}=\frac{m}{2 \sigma_{e f f}} \sum_{i k l} H_{p}^{i k}\left(x_{1}, x_{2}, \mu_{A}, \mu_{B}\right) H_{p}^{j l}\left(x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \mu_{A}, \mu_{B}\right) \\
& \quad \times d \sigma^{i j}\left(x_{1}, x^{\prime}{ }_{1}, \mu_{A}\right) d \sigma^{k l}\left(x_{2}, x^{\prime}{ }_{2}, \mu_{B}\right) d x_{1} d x_{2} d x^{\prime}{ }_{1} d x^{\prime}{ }_{2}
\end{aligned}
$$

- We work in an approximation where scatterings are independent

$$
H_{p}^{i, k}\left(x_{1}, x_{2}, \mu_{A}, \mu_{B}\right)=f_{p}^{i}\left(x_{1}, \mu_{A}\right) f_{p}^{k}\left(x_{2}, \mu_{B}\right)
$$

- Real goal is to measure

Why DPS?

- QCD beyond 1-1 scatterings and parton distributions
- Structure of proton?
- Additional background to complicated final states
- Measuring one final state gives insight into size of other DPS contributions $\left(\sigma_{\text {eff }}\right)$

Why Wbb?

- bb has large cross section $(\mu \mathrm{b}) \rightarrow$ large probability of second scattering
- W \rightarrow lepton easy to identify
- Simplest topologies of DPS (2 to 2)
- Possible background to new physics (WH)

Analysis details

- Most samples, including Wbb DPS and SPS generated with POWHEG-BOX processes
- NLO tests how robust variables are in distinguishing DPS from SPS
- Cuts and simple detector effects (smearing) through analysis progam PEAT

Basic cuts

- $\mathrm{p}_{\mathrm{Tb}}>20 \mathrm{GeV},\left|\eta_{\mathrm{b}}\right|<2.5$
- $20 \mathrm{GeV}<\mathrm{p}_{\mathrm{T} \mu}<50 \mathrm{GeV},\left|\mathrm{n}_{\mu}\right|<2.1$
- $E_{t}^{\text {miss }}>20 \mathrm{GeV}$
- $\Delta R_{b b}>0.4, \Delta R_{b \mu}$

Backgrounds

- Other processes contribute to or fake this final state

Process	Generator-level Cuts	Acceptance Cuts	$\mathrm{F}_{T} \leq 45 \mathrm{GeV}$	$S_{p_{T}}^{\prime} \leq 0.2$
$W^{ \pm} b \bar{b}(\mathrm{DPS})$	10000	247	231	173
$W^{ \pm} b \bar{b}(\mathrm{SPS})$	44000	1142	569	114
$t \bar{t}$	225000	1428	290	13
$W^{ \pm} j j(\mathrm{DPS})$	476000	43.5	37.7	27.3
$W^{ \pm} j j(\mathrm{SPS})$	20300000	101	55.7	19.6
Single top	20000	492	168	15
$W^{ \pm} b j$	153000	152	53.1	8.2

Backgrounds

- Other processes contribute to or fake this final state

Process	Generator-level Cuts	Acceptance Cuts	$\mathrm{E}_{T} \leq 45 \mathrm{GeV}$	$S_{p_{T}}^{\prime} \leq 0.2$
$W^{ \pm} b \bar{b}(\mathrm{DPS})$	10000	247	231	173
$W^{ \pm} b \bar{b}(\mathrm{SPS})$	44000	1142	569	114
\bar{t}	225000	1428	290	13
$W^{ \pm} j j(\mathrm{DPS})$	476000	43.5	37.7	27.3
$W^{ \pm} j j(\mathrm{SPS})$	20300000	101	55.7	19.6
Single top	20000	492	168	15
$W^{ \pm} b j$	153000	152	53.1	8.2

Killing tt

- Attempts to remove tops via mass reconstruction messy, can remove signal
- Upper missing energy cut (45 GeV) very effective (tops have transverse momentum, mass to give)

Discriminating DPS and SPS

- We want kinematic variables that expose 2 to 2 processes from 2 to 4 processes
- Define

$$
S_{p_{T}}^{\prime}=\frac{1}{\sqrt{2}} \sqrt{\left(\frac{\left|p_{T}\left(b_{1}, b_{2}\right)\right|}{\left|p_{T}\left(b_{1}\right)\right|+\left|p_{T}\left(b_{2}\right)\right|}\right)^{2}+\left(\frac{\left|p_{T}(l, v)\right|}{\left|p_{T}(l)\right|+\left|p_{T}(v)\right|}\right)^{2}}
$$

Discriminating DPS and SPS

- We want kinematic variables that expose 2 to 2 processes from 2 to 4 processes
- Define

$$
S_{p_{T}}^{\prime}=\frac{1}{\sqrt{2}} \sqrt{\left(\frac{\left|p_{T}\left(b_{1}, b_{2}\right)\right|}{\left|p_{T}\left(b_{1}\right)\right|+\left|p_{T}\left(b_{2}\right)\right|}\right)^{2}+\left(\frac{\left|p_{T}(l, v)\right|}{\left|p_{T}(l)\right|+\left|p_{T}(v)\right|}\right)^{2}}
$$

Go to zero for 2-2 in LO limit

$S_{\mathrm{pr}}{ }^{\text {. }}$

- See NLO effect on DPS, but clearly still peaked low

$\mathrm{S}_{\mathrm{pt}}{ }^{\prime}$ (with backgrounds)

- Missing transverse energy cut sculpts to some extent; Wjj DPS dominates low $\mathrm{S}_{\mathrm{p} T}{ }^{\prime}$ region

S_{pt} (with backgrounds)

$$
\frac{S}{\sqrt{B}}=12.3
$$

Other observables

- Interplane angle

$$
\cos \left(\Delta \Theta_{b \bar{b}, l v}\right)=\hat{n}_{3}\left(b_{1}, b_{2}\right) \cdot \hat{n}_{3}(l, v)
$$

Uncorrelated in DPS

- Requires reconstruction of neutrino longitudinal momentum
- Azimuthal angle between bb and Iv systems $\cos \left(\Delta \phi_{b b, I v}\right)=\hat{p_{T}}\left(b_{1}, b_{2}\right) \cdot \hat{p_{T}}(l, v)_{v}$
- Tend to be back-to-back in SPS (momentum conservation)

Other observables

- Some correlation seen in SPS interplane angle; neutrino reconstruction ambiguity
- Very sharp distinction in azimuthal angle, even with NLO

2D distributions

$$
\frac{S}{\sqrt{B}}=15.2
$$

Summary

- Double parton production can be important relative to single parton rate
- Variables designed to expose 2 to 2 processes can be used to differentiate DPS from SPS at excellent significance (12-15 σ)
- Once isolated, can determine $\sigma_{\text {eff }}$ for this process, compare to others at LHC

New physics searches?

