LHC Sensitivity to Wbb Production via Double Parton Scattering at 7 TeV

Seth Quackenbush Argonne National Laboratory

with E. Berger, C. Jackson, and G. Shaughnessy arXiv: 1107.3150, accepted to PRD

Brookhaven Forum 2011, 11/20/11

Outline

- What is Double Parton Scattering?
- Motivation
- Analysis details and backgrounds
- How to tell DPS from SPS
- Results
- Summary

What is Double Parton Scattering?

- Proton made of many partons
- More than one can scatter when struck
- Double parton scattering (DPS): 2 partons from one proton on 2 partons from another (2 nearly independent high scale interactions)

What is Double Parton Scattering?

SPS

DPS

Double parton distributions

Assuming some kind of factorization holds,

$$d\sigma_{pp}^{DPS} = \frac{m}{2\sigma_{eff}} \sum_{ikjl} H_{p}^{ik}(x_{1}, x_{2}, \mu_{A}, \mu_{B}) H_{p}^{jl}(x'_{1}, x'_{2}, \mu_{A}, \mu_{B}) \times d\sigma^{ij}(x_{1}, x'_{1}, \mu_{A}) d\sigma^{kl}(x_{2}, x'_{2}, \mu_{B}) dx_{1} dx_{2} dx'_{1} dx'_{2}$$

 We work in an approximation where scatterings are independent

 $H_{p}^{i,k}(x_{1},x_{2},\mu_{A},\mu_{B})=f_{p}^{i}(x_{1},\mu_{A})f_{p}^{k}(x_{2},\mu_{B})$

Real goal is to measure

Why DPS?

- QCD beyond 1-1 scatterings and parton distributions
- Structure of proton?
- Additional background to complicated final states

- Measuring one final state gives insight into size of other DPS contributions (σ_{eff})

Why Wbb?

- bb has large cross section (µb) \rightarrow large probability of second scattering
- $W \rightarrow$ lepton easy to identify
- Simplest topologies of DPS (2 to 2)
- Possible background to new physics (WH)

Analysis details

- Most samples, including Wbb DPS and SPS generated with POWHEG-BOX processes
 - NLO tests how robust variables are in distinguishing DPS from SPS
- Cuts and simple detector effects (smearing) through analysis progam PEAT (G. Shaughnessy)

Basic cuts

- p_{Tb} > 20 GeV, |η_b| < 2.5
- 20 GeV < p_{Tµ} < 50 GeV, |η_µ| < 2.1
- E^{miss} > 20 GeV
- $\Delta R_{bb} > 0.4, \Delta R_{b\mu}$

Backgrounds

Other processes contribute to or fake this final state

Process	Generator-level Cuts	Acceptance Cuts	$E_T \le 45 \text{ GeV}$	$S'_{p_T} \leq 0.2$
$W^{\pm}b\bar{b} \ (DPS)$	10000	247	231	173
$W^{\pm}b\bar{b}~({ m SPS})$	44000	1142	569	114
$t\bar{t}$	225000	1428	290	13
$W^{\pm}jj$ (DPS)	476000	43.5	37.7	27.3
$W^{\pm}jj$ (SPS)	20300000	101	55.7	19.6
Single top	20000	492	168	15
$W^{\pm}bj$	153000	152	53.1	8.2

Backgrounds

Other processes contribute to or fake this final state

Process	Generator-level Cuts	Acceptance Cuts	$\not \! \! E_T \leq 45 \; {\rm GeV}$	$S'_{p_T} \le 0.2$	
$W^{\pm}b\bar{b}$ (DPS)	10000	247	231	173	
$W^{\pm}b\bar{b}~(\mathrm{SPS})$	44000	1142	569	114	
$t\bar{t}$	225000	1428	290	13	
$W^{\pm}jj$ (DPS)	476000	43.5	37.7	27.3	Tauah
$W^{\pm} j j$ (SPS)	20300000	101	55.7	19.6	rougr
Single top	20000	492	168	15	
$W^{\pm}bj$	153000	152	53.1	8.2	

Killing tt

- Attempts to remove tops via mass reconstruction messy, can remove signal
- Upper missing energy cut (45 GeV) very effective (tops have transverse momentum, mass to give)

Discriminating DPS and SPS

- We want kinematic variables that expose 2 to 2 processes from 2 to 4 processes
- Define (Berger, Jackson, Shaughnessy)

$$S'_{p_{T}} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|p_{T}(b_{1},b_{2})|}{|p_{T}(b_{1})| + |p_{T}(b_{2})|}\right)^{2} + \left(\frac{|p_{T}(l,\nu)|}{|p_{T}(l)| + |p_{T}(\nu)|}\right)^{2}}$$

Discriminating DPS and SPS

- We want kinematic variables that expose 2 to 2 processes from 2 to 4 processes
- Define (Berger, Jackson, Shaughnessy)

$$S'_{p_{T}} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|p_{T}(b_{1},b_{2})|}{|p_{T}(b_{1})| + |p_{T}(b_{2})|}\right)^{2} + \left(\frac{|p_{T}(l,\nu)|}{|p_{T}(l)| + |p_{T}(\nu)|}\right)^{2}}$$

Go to zero for 2-2 in LO limit

S_{pT}'

 See NLO effect on DPS, but clearly still peaked low

S_{pT} (with backgrounds)

 Missing transverse energy cut sculpts to some extent; Wjj DPS dominates low S_{pT}' region

S_{pT} (with backgrounds)

 $\frac{S}{\sqrt{B}} = 12.3$

Other observables

- Interplane angle (Berger, Jackson, Shaughnessy) $\cos(\Delta \Theta_{b\bar{b},l\nu}) = \hat{n}_3(b_1, b_2) \cdot \hat{n}_3(l, \nu)$ Uncorrelated in DPS
 - Requires reconstruction of neutrino longitudinal momentum
- Azimuthal angle between bb and lv systems

 $\cos(\Delta \phi_{b\bar{b},l\nu}) = \hat{p}_T(b_1, b_2) \cdot \hat{p}_T(l, \nu)$

 Also uncorrelated in DPS; generated through higher order/shower
 Tend to be back-to-back in SPS (momentum conservation)

Other observables

- Some correlation seen in SPS interplane angle; neutrino reconstruction ambiguity
- Very sharp distinction in azimuthal angle, even with NLO

2D distributions

 $\frac{S}{\sqrt{B}} = 15.2$

Summary

- Double parton production can be important relative to single parton rate
- Variables designed to expose 2 to 2 processes can be used to differentiate DPS from SPS at excellent significance (12-15 σ)
- Once isolated, can determine σ_{eff} for this process, compare to others at LHC

New physics searches?

