Recent ATLAS Results

Henri Bachacou

BNL Forum 2011

Introduction

- A very exciting and productive year → long list of results
- I will focus on some of most recent results on searches:
 - → (brief summary of SM and top physics)
 - → Higgs
 - → Supersymmetry
 - → Exotic searches
- Complete information about all results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

The Large Hadron Collider (LHC)

- pp collisions at $\sqrt{s} = 7$ TeV (and PbPb at $\sqrt{s}_{NN} = 2.76$ TeV, not covered in this talk)
- LHC has performed extremely well this year:
 - → 3.4 10³³ /cm²/s peak luminosity
 - → 4.9 fb⁻¹ delivered, thanks!
- 50 ns bunch spacing
- 6 collisions / crossing in 1st 2 fb⁻¹
 (~ twice more in recent data)
- Results shown today: up to 2.3 fb⁻¹

The ATLAS Detector

H. Bachacou, Irfu CEA-Saclay

The ATLAS Detector Already close to nominal performance!

	Toroids B.dl ~ 1-7 T.m		
	RPC + TGC: triggers	0.0 0/2 0/4 0/6 0/8 1/0 EML 1	2
Muon	MDT + CSC: precision		
Spectrometer	σ/p _T = 2% @ 50 GeV	BOL Barrel Toroid	A
	σ/p _T ~ 13% @ 1 TeV	BML	
	Fe+scint. or Cu/W+LAr		
Hadronic	σ/E ~ 50%/E ^{1/2} ⊕ 3%	BIL	.8
Calorimeter	Thickness ~ 10 λ		2.0
		EIL TGC3	
EM	Lead+LAr		27
	σ/E ~ 10%/E ^{1/2} ⊕ 1.5%	CSC TGC1 HGC2	
Calonineter	Thickness ~ 24 X_0		
	2 Tesla solenoid		
Inner	Si pixels + strips		
Detector	TRT		
	σ/p _τ = 5 x 10 ⁻⁴ p _τ ⊕ 0.01		
		Persint	

H. Bachacou, Irfu CEA-Saclay

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- \rightarrow H \rightarrow gg
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

Supersymmetry

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

- → Heavy Resonances
- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- \rightarrow H \rightarrow gg
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

- → Heavy Resonances
- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

The Standard Model at $\sqrt{s} = 7 \text{ TeV}$

SM measurements are the foundations of all searches

33 ATLAS papers on Standard Model measurements to date

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- $\rightarrow H \rightarrow gg$
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

Supersymmetry

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

- → Heavy Resonances
- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

Higgs Production at the LHC

 \rightarrow e.g. H \rightarrow bb

8.000

Higgs Decay Channels

- Low mass:
 - → H → $\gamma\gamma$: small B.R. but sizable yield
 - $\rightarrow~H\rightarrow$ bb in associated prod
 - $\rightarrow~H\rightarrow\tau\tau$ in VBF production
- Intermediate mass:
 - → H → WW → lvlv: large yield but poor mass resolution
 - → H → ZZ → 4I: "golden channel", low yield but low background and excellent mass resolution
- High mass:
 - $\rightarrow \ H \rightarrow WW \rightarrow Ivqq$
 - $\rightarrow \ H \rightarrow ZZ \rightarrow IIqq$
 - $\rightarrow H \rightarrow ZZ \rightarrow IIvv$

$H \rightarrow \gamma \gamma$

- "Benchmark channel", drove the design of experiments:
 - → Fake rejection
 - → Mass resolution

Most important channel at very low mass

H. Bachacou, Irfu CEA-Saclay

$H \rightarrow ZZ \rightarrow 4$ leptons

 "Golden channel": best Higgs mass resolution and low background

$\mathsf{H} \to \mathrm{WW} \to \mathrm{lvlv}$

Poor mass resolution, difficult background, but large yield Top and WW bgds estimated from data

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{P}_{\rm T}^{\ell\ell} + \mathbf{P}_{\rm T}^{\rm miss})^2}$$

BNL Forum 2011

$\mathsf{H} \to \mathrm{W}\mathrm{W} \to \mathrm{lv}\mathrm{lv}$

- Poor mass resolution, difficult background, but large yield
- Most sensitive of all channels
- Powerful over a wide range

Top and WW bgds estimated from data

H. Bachacou, Irfu CEA-Saclay

Higgs Search: Combination of Channels

Higgs Search: Combination of Channels

Higgs Search: Summary

- With 2 fb⁻¹, ATLAS excludes SM Higgs over wide range: ranges [146-230], [256-282], [296-459] GeV exluded at 95% C.L.
- The 2 experiments combined could exclude the SM Higgs over the entire range with 5 fb⁻¹ (2011 data)
- Discovery at low mass is most challenging
- Discovery is within reach for any mass with ~20 fb⁻¹ (end of 2012)

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- \rightarrow H \rightarrow gg
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

Supersymmetry

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

→ Heavy Resonances

- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

Why look "beyond" the Standard Model?

- The Standard Model is a (very) effective theory that breaks down at a certain scale
 - → Hierarchy: quadratic divergence of the Higgs mass, extremely fine-tuned
 - → What is the underlying nature of EWSB?
- Dark Matter
 - → cannot be explained by SM
- Neutrinos have mass
 - → where are the right-handed neutrinos?
- BSM models attempt to solve the SM limitations

A very long list of models x signatures

A very long list of models x signatures

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry^{*}
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')⁴
- LRSM, heavy neutrino ,
- etc...

(for illustration only)

- 1 jet + MET jets + MET 1 lepton + MET Same-sign di-lepton **Dilepton resonance Diphoton resonance** Diphoton + MET Multileptons Lepton-jet resonance Lepton-photon resonance Gamma-jet resonance **Diboson resonance** Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
- etc...

A complex 2D problem

Experimentally, a **signature standpoint** makes a lot of sense:

- → Practical
- → Less modeldependent
- → Important to cover every possible signature

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- \rightarrow H \rightarrow gg
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

Supersymmetry

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

- → Heavy Resonances
- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

Supersymmetry

1. SUSY: Jets + Missing E_{T}

• "Workhorse" analysis

- $\rightarrow m_{eff} = H_T + Missing E_T$
- → Optimize cut on m_{eff} and Missing ET for each jet multiplicity
- → Combine 5 channels (2-4 jets)

Signal Region	≥ 2 jets	\geq 3 jets	\geq 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.25	> 0.25	> 0.2
<i>m</i> _{eff} [GeV]	> 1000	> 1000	> 500/1000	> 1100

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

 $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$

1. SUSY: Jets + Missing E_{T}

Exclude up to ~ 1 TeV for m(squark) = m(gluino)

H. Bachacou, Irfu CEA-Saclay

BNL Forum 2011

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

 $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$

1. SUSY: Jets + Missing E_{T}

- Large Jet Multiplicity (6 jets and more)
 - → Increase reach in some region of parameter space

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

 $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$

3. SUSY: b-Jets + lepton + Missing E_T

- What if gluinos decay preferentially to 3rd generation?
- Consider several pheno.
 scenarii, such as: Assume m(g) > m(t
 ₁) > m(x
 ₁[±]) > m(x
 ₁⁰) (and everything else heavier)

Consider only the following decays:

- $\widetilde{g} \to \widetilde{t}_1 t \qquad ; \qquad \widetilde{t}_1 \to b \widetilde{\chi}_1^{\, {\scriptscriptstyle \pm}}$
- and $\widetilde{\chi}_1{}^{\scriptscriptstyle \pm} \to W^{\star}\, \widetilde{\chi}_1{}^{\scriptscriptstyle 0}$
- Complex final states with lepton(s) and b-jets
- Limit on gluino mass: m(gluino) > 500 GeV at 95% C.L

ATL-CONF-2011-098

4. SUSY: diphoton + jet + Missing E_{T}

H. Bachacou, Irfu CEA-Saclay

BNL Forum 2011

5. "Exotic" SUSY: One Example

- R- hadrons (hadronized squarks or gluinos)
- Vertex outside the beampipe, in association with a high-pT muon
- Requires good understanding of tracking, detector passive material

Supersymmetry: Summary

- SUSY in its most hoped for incarnation is starting to be in trouble
 - → Of course we will continue looking and increasing our reach
- What if SUSY were hiding? (e.g. no Missing E_T)
 - → "Split", "low-MET", "squashed", "mashed?"
 - → Even if very soft cascade at tree level, Initial State Radiation still creates MET, but this needs to be studied further
- With >1 fb⁻¹, other SUSY prod. mechanisms open up → exclusive chargino/neutralino and 3rd generation production
- SUSY without MET: e.g. R-Parity Violation, Long-Lived Particles

Outline

SM in one slide

- → Electroweak Measurements
- → Top Quark

<u>SM Higgs</u>

- \rightarrow H \rightarrow gg
- $\rightarrow H \rightarrow ZZ \rightarrow 4I$
- $\rightarrow H \rightarrow WW \rightarrow |v|v$
- → Combination

Supersymmetry

- → Jets + MET
- → Lepton(s) + MET
- → 3rd generation + MET
- → Photon(s) + MET
- → "Exotic" SUSY (no MET)

Exotic Searches

→ Heavy Resonances

- → Same-sign Dilepton
- → Top-Antitop Properties
- → TeV-gravity

Search for Heavy Resonance

Predicted by numerous extensions of the Standard Model:

- → GUT-inspired theories, Little Higgs \rightarrow heavy gauge boson(s) Z' (W')
- → Technicolor → narrow technihadrons
- → Randall-Sundrum ED → Kaluza-Klein graviton
- Experimental challenge: understand detector performance (resolution, efficiency) for a signal with (almost) no control sample at very high momentum → confidence in alignment, simulation, etc...
- Electrons and muons: Rapidly approaching 1 TeV!

Search for Heavy Resonance: dilepton channel

- Neutral heavy gauge boson
- Randall-Sundrum KK graviton excitation
- Technihadron
- Muon channel: Require 3 station tracks for good resolution → loss of acceptance in intermediate region between barrel and end-cap (missing chambers)

Search for Heavy Resonance: dilepton channel

- Neutral heavy gauge boson
- Randall-Sundrum KK graviton excitation
- Technihadron

Sequential SM: m(Z') > 1.8 TeV at 95% C.L.RS graviton (k/M_{Pl} = 0.1): m(G) > 1.6 TeV at 95% C.L.

Search for Heavy Resonance: Dijet

- Excited quarks, strong gravity, contact interaction
- Look for resonance ("BumpHunter") above phenomenological fit of the data

Probing the quark structure beyond 4 TeV

Search for Heavy Resonance: Dijet

m(jet-jet) = 4.0 TeV

Missing E_T = 100 GeV

Search for Heavy Resonance: Dijet

Model	95% CL Limits (TeV)		
	Expected	Observed	
Excited Quark q^*	2.81	2.99	
Axigluon	3.07	3.32	
Colour Octet Scalar	1.77	1.92	

Also providing modelindependent limits: 95% CL Limit on $\sigma imes \mathcal{A}$ [pb] ATLAS $\sqrt{s} = 7 \text{ TeV}$ $\int L dt = 1.0 \text{ fb}^{-1}$ $\sigma_{\rm G}$ / ${\rm m}_{\rm G}$ -- 0.15 -- 0.10 10⁻¹ -- 0.07 -- 0.05 10⁻² 1000 2000 3000 4000 Mass, m_G [GeV]

Inclusive search Search for Heavy Resonance: Same-Sign Dilepton

BNL Forum 2011

Search for Heavy Resonance: Same-Sign Dilepton

Doubly-charged Higgs search

- → based on same analysis as inclusive search
- → window 10% around Higgs mass

ATL-CONF-2011-127

Top-antitop + Missing Energy 🎺

- Look for topology: $T T \rightarrow tt A_{n} A_{n}$
- T can be:
 - → Spin 1⁄2: 4th generation
 - → Scalar: stop, leptoquark

Strong Gravity at TeV-scale, Microscopic Black Holes

Large Extra-D (ADD):

→ Brings the Plank scale down to the TeV scale:

 $M_{Pl}^2 \sim M_D^{2+n} R^n$

- → Gravity becomes strong at TeV
- Microscopic black-holes decaying through Hawking radiation
- Large uncertainty on models due to our ignorance of quantum gravity

- Semi-classical models only for m(B.H.) >> m(threshold)
- A safe bet: decay is democratic and isotropic
- Look for (many) jets and leptons at high mass

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, Irfu CEA-Saclay

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, Irfu CEA-Saclay

BNL Forum 2011

Summary

SUSY

Extra dimensions

Z' / W" Ct.

P N

Other

ATLAS Searches* - 95% CL Lower Limits (Lepton-Photon 2011)

Mass scale [TeV]

*Only a selection of the available results leading to mass limits shown

My own one-slide summary

Unfortunately, no hint of New Physics in the LHC data (yet)

	Lower Limit (95% C.L.)
SUSY ($m_{\tilde{q}} = m_{\tilde{g}}$)	1 TeV
Gauge bosons (SSM)	2 TeV
Excited quark	3 TeV

Conclusion

- SM Higgs is around the corner (or is not)
- Experimental challenges as we enter further the Multi-TeV world:
 - → Improved analysis techniques (multivariate analyses etc...)
 - → TeV leptons
 - → Reconstruction of boosted objects (W, top)
 - → Investigate less obvious signatures (SUSY without MET, signature with non-isolated leptons, etc...)
- It's only the beginning!

Backup

Higgs Search: Combination of Channels

One step back: before setting limits, let's see if we found anything...

H. Bachacou, Irfu CEA-Saclay

Supersymmetry

- Extension of the Poincaré algebra
- Fermion ↔ Boson symmetry
- Solves many problems of the SM, esp. stabilizes Higgs sector '
- If R-parity (R = (-1)^{3(B-L)+2s}) is conserved, Lightest SUSY Particle (LSP) is an excellent Dark Matter candidate
- Phenomenology is **very** diverse

2. SUSY: Lepton(s) + Jets + Missing ET

- Leptons arise from slepton or charginos or W/Z decays
- Due to smaller Branching Ratio, less stringent limits than fully hadronic but complementary
- Look for 1-I+Jets+MET
- Look for 2-I+Jets+MET
 - → (same-sign or opposite sign)
 - → Flavor subtraction selects flavor-correlated decays

2. SUSY: Lepton(s) + Jets + Missing ET

- Leptons arise from slepton or charginos or W/Z decays
- Due to smaller Branching Ratio, less stringent limits than fully hadronic but complementary
 - Look for 1-I+Jets+MET
- Look for 2-I+Jets+MET
 - → (same-sign or opposite sign)
 - → Flavor subtraction selects flavor-correlated decays

Submitted to PRD arxiv:1109.6606

(I = e or μ)

H. Bachacou, Irfu CEA-Saclay

2. SUSY: Lepton(s) + Jets + Missing ET

Dilepton (+jets) + MET, ATLAS 1 fb⁻¹

ወ		Background	Obs.	95% C.L.	
SIT	OS-SR1	$15.5 \pm 1.2 \pm 4.4$	13	$9.5~{ m fb}$	
d s	OS-SR2	$13.0 \pm 1.8 \pm 4.1$	17	15.2 fb	
<u>d 3</u>	OS-SR3	$5.7 \pm 1.1 \pm 3.5$	2	$5.0 \mathrm{fb}$	
ຍ	SS-SR1	$32.6 \pm 4.4 \pm 4.4$	25	10.2 fb	
an Z	SS-SR2	$24.9 \pm 4.1 \pm 6.6$	28	20.3 fb	
i n	δ			•	

- Leptons arise from slepton or charginos or W/Z decays
- Due to smaller Branching Ratio, less stringent limits than fully hadronic but complementary
- Look for 1-I+Jets+MET
- ook for 2-I+Jets+MET
 - (same-sign or opposite sign) \rightarrow

Flavor subtraction selects $ee + \mu\mu - e\mu$ flavor-correlated decays

$(I = e \text{ or } \mu)$

H. Bachacou, Irfu CEA-Saclay

SUSY: Lepton(s) + Jets + Missing ET

ATLAS SUSY 2-lepton event selection:

→ Opposite-sign

Signal Region	OS-SR1	OS-SR2	OS-SR3
$E_{\rm T}^{\rm miss}$ [GeV]	250	220	100
Leading jet p_T [GeV]	-	80	100
Second jet p_T [GeV]	-	40	70
Third jet $p_{\rm T}$ [GeV]	-	40	70
Fourth jet $p_{\rm T}$ [GeV]	-	-	70

(b)

Signal Region	SS-SR1	SS-SR2
$E_{\rm T}^{\rm miss}$ [GeV]	100	80
Leading jet p_T [GeV]	-	50
Second jet $p_{\rm T}$ [GeV]	-	50

\rightarrow	Same-sign

	(0)		
Signal Region	FS-SR1	FS-SR2	FS-SR3
$E_{\rm T}^{\rm miss}$ [GeV]	80	80	250
Number jets	≥ 2	-	-
m_{ll} veto [GeV]	-	80-100	-

(c)

→ Flavor-subtraction

3. SUSY: b-Jets + lepton + Missing E_T

- What if gluinos decay preferentially to 3rd generation?
- Consider several pheno.
 scenarii, such as: Assume m(ğ) << m(t
 ₁) << m(q
 _{1,2}) ≈ m(b
 ₁)

Consider only gluino-gluino production followed by decay through off-shell stop:

 $\widetilde{g} \to \widetilde{t}_1^{\,*} t \ \to \ t t \widetilde{\chi}_1^{\,0}$

 Complex final states with lepton(s) and b-jets

Limit on gluino mass(m(χ₁⁰) < 80 GeV): 100 m(gluino) > 540 GeV at 95% C.L.

ATL-CONF-2011-130

3. SUSY: b-Jets + Missing E_{T}

H. Bachacou, Irfu CEA-Saclay

BNL Forum 2011

Search for Heavy Resonance: eµ

Wjj

Top-antitop Resonance

- RS graviton might decay mostly to ttbar
- Limit with 200 pb⁻¹: m(RS graviton) > 620 GeV (being updated with 1fb⁻¹)

Top-antitop Resonance

- RS graviton might decay mostly to ttbar
- Limit with 200 pb⁻¹: m(RS graviton) > 620 GeV (being updated with 1fb⁻¹)
- At high mass, requires special boosted top reconstruction

Top-antitop Resonance

- RS graviton might decay mostly to ttbar
- Limit with 200 pb⁻¹: m(RS graviton) > 620 GeV (being updated with 1fb⁻¹)
- At high mass, requires special boosted top reconstruction

Search for Monojets

Number of Extra Dimensions

Large Extra-D (ADD):

- → Brings the Plank scale down to the TeV scale: $M_{Pl}^2 \sim M_D^{2+n} R^n$
- → Graviton escapes detector
- Also Split SUSY
- Look for a jet and
 nothing else
- Challenge:
 - → Instrumental background
 - → Understanding $Z(\rightarrow vv)$ + jets

Search for Heavy Resonance: W' \rightarrow Iv

- Heavy charged gauge boson
- Technirho, Little Higgs
- 1 lepton + Missing E_T
- Look for Jacobian peak

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Sequential SM: m(W') > 2.15 TeV at 95% C.L.

H. Bachacou, Irfu CEA-Saclay

BNL Forum 2011