Diboson Production and Anomalous Triple Gauge Couplings in ATLAS

Shih-Chieh Hsu (LBNL) Lawrence Berkeley National Lab

Oct 19, 2011 Brookhaven National Lab Brookhaven Forum 2011: A First Glimpse of the Tera Scale

Outline

Motivations

Standard Model Diboson Cross-section 2010 35 pb⁻¹

- Wγ/Zγ JHEP 09 (2011) 072
- WW ATLAS-CONF-2011-110
- WZ ATLAS-CONF-2011-099
- ZZ ATLAS-CONF-2011-107

Diboson searches

• ZZ ATLAS-CONF-2011-144

2011 1 fb⁻¹

Summary

The Standard Model Diboson Production

Signature

Associated production of two gauge bosons of electroweak interactions.

Foundation for later work

- Precision test of the standard model in self-coupling
- Charged Triple Gauge Couplings (TGC) in the W/Z sectors

The Standard Model Diboson Production

Signature

Associated production of two gauge bosons of electroweak interactions.

Foundation for later work

- Precision test of the standard model in self-coupling
- Charged Triple Gauge Couplings (TGC) in the W/Z sectors
- Anomalous Neutral TGC in the Z/γ sectors

 $ZZZ/ZZ\gamma$ are forbidden in the SM

Diboson is crucial for Higgs/BSM search

- Primary search channel in a wide Higgs mass range see Tae Ming Hong's talk on Oct 20
- Unique signature/important background in Beyond the Standard Model search Technicolor, Extra Dimension, SUSY

Cross-section Measurement

Fiducial cross-section:

Define efficiency in selected region C_{zz} =N(reconstructed)/N(truth in fiducial)

Total cross-section:

Extrapolation to full cross-section $A_{zz} = N(truth in fiducial)/N(Total)$

$$\frac{N_{obs} - N_{bkg}}{C_{ZZ} BR(ZZ \rightarrow e, \mu) L}$$

$$\frac{N_{obs} - N_{bkg}}{A_{ZZ}C_{ZZ}BR(ZZ \rightarrow e, \mu)L}$$

$W\gamma/Z\gamma$ Production

Signature

Wy: one lepton + one photon and large Met Zy: two lepton + one photon Lepton pT> 20 GeV photon pT> 15 GeV MET > 25 GeV dR(l,photon) >0.7

Wy/Zy Results Summary

All measurements are consistent with SM expectations

Process	Observed	${ m EW}{+}tar{t}$	W+jets	Extracted
	events	background	background	signal
$N_{obs}(W\gamma ightarrow e^{\pm} u \gamma)$	95	$10.3\pm0.9\pm0.7$	$16.9\pm5.3\pm7.3$	$67.8 \pm 9.2 \pm 7.3$
$N_{obs}(W\gamma ightarrow \mu^{\pm} u \gamma)$	97	$11.9\pm0.8\pm0.8$	$16.9\pm5.3\pm7.4$	$68.2\pm9.3\pm7.4$
Process	Observed	$EW+t\bar{t}$		Extracted
	events	background		signal
$N_{obs}(Z\gamma ightarrow e^+e^-\gamma)$	25	3.7 ± 3.7		$21.3 \pm 5.8 \pm 3.7$
$N_{obs}(Z\gamma ightarrow \mu^+\mu^-\gamma)$	23	3.3 ± 3.3		$19.7\pm4.8\pm3.3$

8

2010 35 pb⁻¹

WW Production

Events / 5GeV

data/MC

WW Results

Observation: 414 candidates with background 169.8±6.4±27.1

Fiducial Cross-section results

Channels	expected σ^{fid} (fb)	measured σ^{fid} (fb)	$\Delta \sigma_{stat}$ (fb)	$\Delta \sigma_{syst}$ (fb)	$\Delta \sigma_{lumi}$ (fb)
evev	66.8	90.1	\pm 18.9	± 11.3	± 3.3
μνμν	63.8	62.0	\pm 12.1	\pm 10.7	± 2.3
evμv	245.1	252.0	\pm 24.6	\pm 29.4	\pm 9.3

Total Cross-section results consistent to NLO (46±3 pb)

 σ_{total} =48.2± 4.0(stat)± 6.4(sys) ± 1.8(lumi) pb

WZ Production

Signature

Three isolated leptons (p_{τ} threshold 20, 15 GeV) One Opposite Signed Z pair missing E_{τ} > 25 GeV

WZ Results

Observation: 71 candidates with background $10.5 \pm 0.8^{+2.9}_{-2.1}$

Fiducial Cross-section

 $\sigma_{WZ \to \ell \nu \ell \ell}^{fid} = 118^{+18}_{-16}(\text{stat}) {}^{+6}_{-6}(\text{syst}) {}^{+5}_{-5}(\text{lumi}) \text{ fb}$

Total Cross-section

Fiducial Cross section:

- $p_T(l) > 15 \text{ GeV}, |\eta| < 2.5, pT(v) > 25 \text{ GeV}$
- M(II)-M_Z < 10 GeV
- M_T(W) > 20 GeV

 $\sigma_{WZ}^{tot} = 21.1^{+3.1}_{-2.8}(\text{stat}) \,{}^{+1.2}_{-1.2}(\text{syst}) \,{}^{+0.9}_{-0.8}(\text{lumi}) \,\text{pb}$

Consistent to NLO 17.2 ± 1 pb

Anomalous Triple Gauge Coupling in WZ

The first aTGC results in WZ production at LHC Results are competitive to previous experiments

Anomalous Coupling	Limits of the 68% C.I.	Limits of the 95% C.I.	
Δg_1^Z	[-0.17, -0.05], [0.13, 0.26]	[-0.21, 0.30]	
$\Delta \kappa^Z$	[-0.8, -0.2], [0.5, 1.0]	[-0.9, 1.2]	
λ	[-0.15, -0.06], [0.06, 0.15]	[-0.18, 0.18]	

ZZ Production

Signature

Four isolated charged leptons (p_{τ} threshold 25, 15 GeV) Z mass window requirement

Footnote: Z in this talk refers to Z/γ^*

Cross-Section Results

Observation: 12 candidates with background 0.3+0.9+0.4 -0.3-0.3

Fiducial cross-section results

 $\sigma_{ZZ \to \ell^+ \ell^- \ell^+ \ell^-}^{\text{fid}} = 19^{+6}_{-5} \text{ (stat)}^{+1}_{-2} \text{ (syst)} \pm 1 \text{ (lumi) fb}$

Total cross-section

 $\sigma_{ZZ}^{\text{tot}} = 8.4^{+2.7}_{-2.3} \text{ (stat)}^{+0.4}_{-0.7} \text{ (syst)} \pm 0.3 \text{ (lumi) pb.}$

•
$$(Z/\gamma^*)(Z/\gamma^*) \rightarrow \ell^+ \ell^- \ell^+ \ell^-, \ \ell = e, \mu;$$

•
$$|m(Z/\gamma *) - m_{PDG}(Z)| < 25 \text{ GeV};$$

•
$$p_{\rm T}^{\ell} > 15 \, {\rm GeV};$$

Consistent to NLO: Xsec (NLO) = $6.5_{-0.3}^{+0.4}$ pb

nTGC Results Comparisons

First neutral TGC results in 7 TeV pp collisions. The best limits with higher energy cut-off Λ

ZZ Resonance Search

ZZ to four lepton Fiducial cross-section limit

17

Summary and Outlook

- All leptonic diboson process is measured and consistent to the SM expectations
- The most competitive or strict TGC limits have been set
- The first 4 lepton ZZ resonance search is presented
- Looking forward to surprise: Higgs? BSM?

Backup

Boosted Large Hadron Collider

LHC has performed extremely well in year 2011:

- Proton-proton collisions at \sqrt{s} 7 TeV
- 50 ns bunch spacing with averaged 6 collisions/crossing
- 2.37 x 10³³ /cm²/s peak luminosity
- Delivered 2.68 fb⁻¹ (Aug) with maximum ~80 pb⁻¹ per day (36 pb⁻¹ in 2010)

The ATLAS Detector

Muon Spectrometer

EM Calorimeter

 $|\eta| < 3.2$, Pb-Lar Accordion $\sigma/E = 10\% \sqrt{E \oplus 0.7\%}$

jet (q or g)

|η|<2.7 Air-core toroids and gas-based muon chambers σ/pT = 2% @ 50GeV to 10% @ 1TeV

Inner Detector

Trans. Rad. Det.; $\sigma/p_{_{T}}$ =0.05% $p_{_{T}}$ (GeV) \oplus 1%

Hadronic Calorimeter

 $|\eta| < 2.5$, B=2T, Si pixels/strips and $|\eta| < 1.7$ Fe/scintillator 1.3< $|\eta| < 4.9$ Cu/W-Lar; σ/Ejet= 50%/√E ⊕ 3%

The ATLAS Detector

- Data taking efficiency ~ 95 %
- Pile-up challenging

substantial in- and out-of-time pile up with 6.3/11.6 interactions per bunch crossing before/after Sep Technical Stop

The results shown in this talk used data up to 1 fb⁻¹

Control Region Plots

Z performance shows reasonable agreement between MC and Data.

115

110 M_{ee} [GeV]

Data

Z+X

Тор

W+X

Dijet

100

105

95

Diboson

 $ZZ \rightarrow I^+I^-I^+I^-$

Heavy Diboson Production Leptonic (e or µ) channels only for high sensitivity

Wy/Zy Cross-Section Results

Fiducial cross-section

$$\sigma_{W_{\gamma}(Z_{\gamma})}^{fid} = \frac{N_{W_{\gamma}(Z_{\gamma})}^{Sig}}{C_{W_{\gamma}(Z_{\gamma})} \cdot L_{W_{\gamma}(Z_{\gamma})}}$$

Total cross-section

$$\sigma_{W\gamma(Z\gamma)}^{prod} = \frac{\sigma_{W\gamma(Z\gamma)}^{fig}}{A_{W\gamma(Z\gamma)}}$$

	Experimental measurement	SM prediction
	$\sigma^{ m fid}[m pb]$	$\sigma^{ m fid}[m pb]$
$pp ightarrow e^{\pm} u \gamma$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3
$pp ightarrow \mu^{\pm} u \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3
$pp ightarrow e^+ e^- \gamma$	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.7 ± 0.1
$pp ightarrow \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1
	$\sigma [{ m pb}]$	$\sigma [{ m pb}]$
$pp ightarrow e^{\pm} u \gamma$	$48.9 \pm 6.6 \pm 8.3 \pm 1.7$	42.1 ± 2.7
$pp ightarrow \mu^{\pm} u \gamma$	$38.7 \pm 5.3 \pm 6.4 \pm 1.3$	42.1 ± 2.7
$pp ightarrow l^{\pm} u \gamma$	$42.5 \pm 4.2 \pm 7.2 \pm 1.4$	42.1 ± 2.7
$pp ightarrow e^+ e^- \gamma$	$9.0 \pm 2.5 \pm 2.1 \pm 0.3$	6.9 ± 0.5
$\mid pp ightarrow \mu^+ \mu^- \gamma$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5
$pp ightarrow l^+ l^- \gamma$	$6.4 \pm 1.2 \pm 1.6 \pm 0.2$	6.9 ± 0.5

- $N_{W\gamma(Z\gamma)}^{Sig}$: Number of measured signal events
- $C_{W_{Y}(Z_{Y})}$: Reconstruction and identification efficiency
- $A_{W\gamma(Z\gamma)}$: Acceptance of fiducial phase space with respect to total production phase space

Wy/Zy Background Estimate

(Signal Region)

5

6

(Control Region)

Isolation Energy [GeV]

MC based method for Z+jet

Anomalous Triple Gauge Couplings Alternative way to probe new physics. Starting from a generalized Lagrangian:

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + ik^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\mu\nu} W^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W_{\mu\nu}^* W^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W^{\mu\nu$$

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

Reduced TGC parameters acquiring gauge invariance

TGC vertex

28

- Charged aTGC: Δg_1^{z} , $\Delta \kappa^z$, λ^z , $\Delta \kappa^{\gamma}$, λ^{γ}
- Neutral TGC: $f_4^{\ z}$, $f_5^{\ z}$, $f_4^{\ y}$, $f_5^{\ y}$, $h_3^{\ z}$, $h_4^{\ z}$, $h_3^{\ y}$, $h_4^{\ y}$ (forbidden in SM)

Unitary conservation

Add form-factor constraint by the scale of new physics

$$f_i^V(s) = \frac{f_{i0}^V}{(1 + s/\Lambda_{FF}^2)^n}$$

Nucl. Phys B282, 253 (1987) PRD47, 4889 (1993) PRD62, 113011 (2000), PRD65 (2002) 075020

Neutral Trilinear Gauge Coupling Measurement

Total expected yield is parametrized as function of TGC parameter

$$s(\sigma_{\text{fiducial}}, C_{ZZ}, f_i^V) = (C_{\text{Sm}} + C_{f_i^V} \cdot f_i^V + C_{f_i^V; f_i^V} \cdot (f_i^V)^2) \cdot \mathcal{L} \cdot C_{ZZ}.$$

Profiling likelihood is used to include systematics uncertainty

$$\begin{split} L(\sigma, C_{ZZ}, b; \Delta_b, \Delta_{C_{ZZ}}, N) &= P(\sigma, C'_{ZZ}, b'; N) \cdot G(C'_{ZZ}; C_{ZZ}, \Delta_{C_{ZZ}}) \cdot G(b'; b, \Delta_b) \\ & \cdot \quad G(C'_{SM}; C_{SM}, \Delta_{C_{SM}}) \cdot G(C'_{f_i^V}; C_{f_i^V}, \Delta_{C_{f_i^V}}) \cdot G(C'_{f_i^V f_i^V}; C_{f_i^V f_i^V}, \Delta_{C_{f_i^V f_i^V}}) \end{split}$$

Infinite energy-cut off results are also included as a reference

Coupling 95% CI	f_4^{γ}	f_4^Z	f_5^{γ}	f_5^Z
$\Lambda = 2 \text{ TeV}$	[-0.15, 0.15]	[-0.12, 0.12]	[-0.15, 0.15]	[-0.13, 0.13]
$\Lambda = \infty$	[-0.08, 0.08]	[-0.07, 0.07]	[-0.08, 0.08]	[-0.07, 0.07]