Conformal Fixed Point of SU(3) Gauge Theory with 12 Fundamental Fermions in the Twisted Polyakov Loop Scheme

Eigo Shintani (RIKEN-BNL)

and

T. Aoyama(KMI), H. Ikeda(KEK), E. Itou(Osaka), M. Kurachi(KMI), C.-J. D. Lin(NCTU&NCTS), H. Matsufuru(KEK), K. Ogawa(NCTU), H. Ohki(KMI), T. Onogi(Osaka) and T. Yamazaki(KMI) arXiv:1109.5806[hep-lat] Brookheaven Forum "A First Glimpse of the Tera Scale", October 19-21, 2011

Plan of my talk

- Introduction
- Twisted Polyakov loop (TPL) scheme
- Nf=12 results
- Summary and outlook

Introduction

Motivation

Search of non-trivial IR fixed point (IRFP) in N_f flavor QCD

- For dynamical EW breaking in (walking) technicolor model
 - One of the candidates of BSM (revival from 80's...)
 - Appelquist (1986), ... Predict dynamical symmetry breaking in strongly interacting gauge theory, analogy with QCD
 - To get rid of large FCNC, S-parameter and small quark mass
 - 1. Nearly conformal theory
 - 2. Large anomalous mass dimension

Does the naïve extension of QCD to large flavor theory realize

the above conditions ? \rightarrow non-perturbative study is important !

• For phase structure

Chiral broken phase and confinement phase will be different or not?

 \rightarrow perception of phase structure of QCD

Holdom (1986), Yamawaki (1986)

Gardi and Karliner (1998),

Ryttov and Sannino (2008)

Miransky and Yamawaki (1997),

Motivation

Caswell-Banks-Zaks IRFP

In 2-loop perturbation, beta function

$$\beta(g^2) \equiv \frac{\partial \alpha}{\partial \ln \mu^2} = -\beta_0 \alpha_s^2 - \beta_1 \alpha_s^3, \quad \alpha_s = g^2 / (4\pi)$$
$$\beta_0 = \frac{1}{4\pi} \left(\frac{11}{3} N_c - \frac{2}{3} N_f \right),$$
$$\beta_1 = \frac{1}{16\pi^2} \left(\frac{34}{3} N_c - \left\{ \frac{13}{3} N_c - \frac{1}{N_c} \right\} N_f \right)$$

IRFP (N_c=3) in N_f^{cr} ($\simeq 8$) $\leq N_f \leq N_f^{af}$ ($\simeq 17$) Caswell (1974), Banks and Zaks (1982)

m = 0 (fundamental rep.)
g(μ→ 0) = g*, IR conformal
⇒ "conformal window"
Chiral symmetry will not be broken,^Nf and <u>1st order transition</u> occurs ?
This perception will be clear in the lattice calculation.

Motivation

• Lattice study in 12 flavor

- Appelquist, et al. (2008,2009)
 - Measurement of the running coupling in SF scheme in staggered fermion
 - See plateau region in $g^2 \simeq 4-5$ that is IRFP
 - \Rightarrow <u>N_f = 12 is conformal</u>
- Fodor et al. (2009,2011)
 - Goldstone pion and composite hadron spectrum in the improved staggered fermion
 - Goldstone pion behaves like χ SB, and $\langle \bar{\psi}\psi \rangle \neq 0$ $\sum_{\chi^2/\text{dof}=3.29}$
 - \Rightarrow <u>N_f = 12 is in broken phase</u>
- A. Hasenfratz, (2010,2011)
 - Monte Calro renormalization group (MCRG)
 - Beta function will cross zero from negative to positive $\Rightarrow N_f = 12$ is conformal

Need confirmation in 12 flavor with different scheme

New scheme

Twisted Polyakov loop scheme

- Different lattice scheme from SF and MCRG
- Avoid a fake (unphysical) fixed point
- Free from *O*(*a*) discretization error
- Practically cheaper cost than Wilson loop scheme Bilgici et al. (2009), Not need large volume, zero fermion mass simulation
 Bilgici et al. (2009), Holland (2009)
- Consistency check with Wilson loop scheme in quenched QCD has been already done.
- Measure the renormalized running coupling in the continuum limit Obtain anomalous dimension of coupling constant (universal object)
- First target on 12 flavor QCD in fundamental representation

Twisted Polyakov loop scheme

Polyakov loop in twisted boundary

Twisted boundary condition

- To avoid degeneracy of vacua ("toron") 'tHooft (1979), Gonzalez-Arroyo (1988)
- Suppression of Z(3) phase transition

 \Rightarrow well defined perturbative expansion of Wilson loop Divitiis, et al. (1994) <u>For gauge field (link variable):</u>

$$U_{\mu}(x + \hat{\nu}L/a) = \Omega_{\nu}U_{\mu}(x)\Omega_{\nu}^{\dagger}, \quad \Omega_{\nu}: \text{ twist matrix}$$

$$\Omega_1 \Omega_2 = e^{i2\pi/3} \Omega_2 \Omega_1, \ \Omega_\nu \Omega_\nu^\dagger = 1, \ \Omega_\nu^3 = 1, \ \text{Tr} \ \Omega_\nu = 0$$

For fermion field:

spinor

$$\psi \underbrace{\stackrel{a}{\alpha}}_{\alpha} \underbrace{\stackrel{b}{b}} (x + \hat{\nu}a/L) = e^{i\pi/3} (\Omega_{\nu})^{aa'} \psi_{\alpha}^{a'b'} (x) (\Omega_{\nu}^{\dagger})^{b'b} \qquad \begin{array}{l} \text{Parisi, (1983)} \\ \text{Wong, et al. (2006)} \end{array}$$

Add "smell" degree of freedom being same as color, corresponding to extra flavor, in order to avoid inconsistency with translational invariance.

Using staggered fermion, flavor number is $Nf = 4 \times 3 = 12$

Polyakov loop in twisted boundary

Ratio of Polyakov loop correlator

$$P_{x}(y,z,t) = \operatorname{Tr} \left[\prod_{x} U_{x}(x,y,z,t) \underbrace{\Omega_{x}}_{\text{Gauge inv. Trans. inv.}} \underbrace{e^{i2\pi/3}}_{\text{Gauge inv. Trans. inv.}} \right], \quad P_{z}(x,y,t) = \operatorname{Tr} \left[\prod_{z} U_{z}(x,y,z,t) \right]$$

$$\left\langle P_{x}(t = L/(2a))P_{x}^{*}(0) \right\rangle \qquad \left\langle P_{z}(t = L/(2a))P_{z}^{*}(0) \right\rangle$$

$$= \underbrace{\left\langle P_{z}(t = L/(2a))P_{z}^{*}(0) \right\rangle}_{L/(2a)} \sim kg_{0}^{2} + \mathcal{O}(g_{0}^{4}) \qquad = \underbrace{\left\langle P_{z}(t = L/(2a))P_{z}^{*}(0) \right\rangle}_{\text{Divitiis (1994)}}$$

$$\left(g_{\mathrm{TP}}^{\mathrm{lat}}\right)^{2} = \frac{1}{k} \frac{\left\langle \sum_{y,z} P_{x}(y,z,L/(2a))P_{x}^{*}(0,0,0) \right\rangle}{\left\langle \sum_{y,z} P_{x}(y,z,L/(2a))P_{x}^{*}(0,0,0) \right\rangle}, \quad \left(g_{\mathrm{TP}}^{\mathrm{lat}}\right)^{2} \Big|_{\mathrm{tree}} = g_{0}^{2}$$

 $k \left\langle \sum_{x,y} P_z(x,y,L/(2a)) P_z^*(0,0,0) \right\rangle$ $k = 0.0318471147 \dots + 0.00453(a/L)^2$

- $(g_{\rm TP}^{\rm lat})^2$ starts from log divergence (renormalized), <u>no linear divergence</u> thanks to cancelation between numerator and denominator.
 - \rightarrow free from O(a/L) discretization error

Polyakov loop in twisted boundary

Behavior in IR region

• In the infinite size, Polyakov loop correlator does not depend on boundary, thanks to cluster theorem, then

$$\lim_{L \to \infty} \frac{\left\langle \sum_{y,z} P_x(y,z,L/(2a)) P_x^*(0,0,0) \right\rangle}{\left\langle \sum_{x,y} P_z(x,y,L/(2a)) P_z^*(0,0,0) \right\rangle} = 1 \quad \Rightarrow \ [g_{\text{TPL}}^2]_{\text{max}} \sim \frac{1}{k} \simeq 31.4$$

• The above value is maximum in the IR limit. It turns out that it is able to distinguish IRFP from other (e.g. QCD-like) theory.

Running coupling constant

Step scaling method

- Inverse of volume is interpreted as a scale.
- Changing the volume gives the stepping behavior of running coupling
- Start from reference point: u_0

which is weak coupling constant in the continuum theory

• Set a step parameter: s

Large step parameter is recommended to investigate deep IR region and suppress correlation

beta

• Step scaling process:

1.
$$u_0 = g_{\text{TPL}}^2(1/L),$$

2. $(g_{\text{TPL}}^{\text{lat}})^2(a, a/L) = u_0, \quad \Sigma(a, a/(sL))) = (g_{\text{TPL}}^{\text{lat}})^2(a, a/(sL))$
3. $\sigma(u_0) = \lim_{a \to 0} \Sigma(a/(sL), a),$
4. $u_1 = \sigma(u_0)$ return to 1.
e.g. $s = 2, aL = 4, 6, 8 \rightarrow saL = 8, 12, 16, \text{ and taking continuum limit with several simulation, we can get step scaling in the continuum theory.$

• If an IRFP exists in $u = u^*$, see $\sigma(u^*)/u^* = 1$

Nf=12 results

Nf=12, staggered fermion

- Dynamical fermion with "smell" in HMC
 4 flavor(default) × 3 smell = 12 flavor effectively
- Simulation on the massless point, thanks to twisted boundary No need of chiral extrapolation $(g_{TPL}^{lat})^2$
- Parameters:

Nf=12, staggered fermion

Continuum limit

- After s step, we need to take the continuum limit. In TPL scheme, O(a/L) error is absent.
- We perform a linear extrapolation for $(a/L)^2$ using data in sL/a = 9,12,15,18.
- Linear function well describes lattice data.
- 3 and 4 points fit are not so different. It turns out that systematic error of scaling violation is not so large.

Σ(u,a/L; s=1.5)

Nf=12, staggered fermion

Running coupling constant in TPL scheme

- Behavior of ratio, $\sigma(u)/u$ vs u
 - From $u \simeq 0.5$, $\sigma(u)/u$ grows up rather than
 - 2-loop, and around $u \simeq 1.3$ it declines to 1.
 - $u \simeq 2.5$ this ratio crosses 1, and it will be conformal point.
 - Anomalous dimension of coupling γ , which is $\gamma = 0.52^{+27}_{-24}$ 2-loop: $\gamma \sim 0.36$ SF scheme: $\gamma = 0.13(3)$ slope at u*

consistent with 2-loop result, but error is still large. \Rightarrow future works

- Running behavior
 - UV region: Consistent with 2-loop
 - IR region:

Observe a unique plateau region for every distribution of JK ensembles, and then $(g_{\rm TPL}^2)^* = 2.48(18)(^{+7}_{-8}) \ll [g_{\rm TPL}^2]_{\rm max}$

Summary and outlook

- Simulation of N_f = 12 SU(3) gauge with fundamental fermion using "Twisted Polyakov loop" scheme.
- High statistics and rigorous lattice calculation at massless point
 - Take the conitnuum limit, and control scaling violation
- Running coupling constant slows down and stops in $(g_{TPL}^2)^* = 2.48(18)(^{+7}_{-8})$
- Our results establish that

Nf = 12 QCD (fund.) has an infrared conformality. \bullet_{Ha}

- Appelquist, et al. Haesenfratz
- Aoki (KMI)
- Pallente, et al.

- On-going works:
 - Mass anomalous dimension in this scheme Obtained from correlator of Goldstone pion
 - SU(2) fundamental in $N_f = 8$, this is almost done

Backup

