An effective Lagrangian Approach to Like Sign Top Pair Production at the LHC

David Atwood (Iowa State U)<br>In collaboration with<br>Amarjit Soni (BNL), Sudhir K Gupta (Monash U Australia)

## Outline

- Motivation
- The Signal
- Operator Basis
- Distributions
- Connection to fb top asymmetry
- New Physics Models
- Conclusion


## Motivation

- The LHC provides an opportunity to Find new physics at the TEV scale.
- Signals which have little or now SM background can provide the most striking evidence of new physics.
- Production of same sign top pairs is such a signal.
- This final state has the added benefit that the self analyzing nature of the top decays can fully characterize the nature of the new physics.
- Many of the NP models that give rise to same sign top pairs may also explain the Tevatron FB asymmetry.


## The Signal

- To produce a like sign top pair, the initial parton state must be uu, so over all we are looking for $\Delta t o p=2$ operators.
- The final state will only be evident if both tops decay semileptonically.
- When a top undergoes semileptonic decay, in the rest frame of the top it is $100 \%$ polarized in the direction of the lepton momentum.


## Parton Level Event



Final State
$\ell^{+} \ell^{+}+p_{\text {Tmiss }}+2$ jets

## Kinematics

## 8 Constraints

8 Unknowns
$p_{v 1} \rightarrow 4$ ?
$p_{v 2} \rightarrow 4$ ?

$$
\begin{array}{ll}
p_{v 1 x}+p_{v 2 x}=\not p_{x} & p_{v 1 y}+p_{v 2 y}=\not p_{y} \\
\left(p_{v 1}\right)^{2}=0 & \left(p_{v 2}\right)^{2}=0 \\
\left(p_{v 1}+p_{\ell 1}\right)^{2}=m_{W}^{2} & \left(p_{v 2}+p_{\ell 2}\right)^{2}=m_{W}^{2} \\
\left(p_{v 1}+p_{\ell 1}+j_{1}\right)^{2}=m_{t}^{2} & \left(p_{v 2}+p_{\ell 2}+j_{2}\right)^{2}=m_{t}^{2}
\end{array}
$$

## Solving the Kinematics

- Since we have 8 eqns in 8 unknowns, we can solve for the neutron momenta and so the complete kinematics however there are combinatorial backgrounds
- There is a 2 -fold ambiguity for matching the jet with the lepton.
- The wrong match generally does not produce a physical solution
- There is up to a 4-fold ambiguity in the algebra (quartic equation)
- Picking the solution with the largest parton luminosity will statistically select the correct solution


## Effective Lagrangian

- At Dimension 6 there are 8 effective lagrangian terms.
- Combining the identical tops into triplet and sextet color states produces a basis where there are few interference terms.
- This leads to a cleaner connection between the angular distributions of the final state and the operator coefficients.


## Operator Basis

- The operators are like s-channel triplet or sextet diquark channels.
- The only interference terms are $1 \times 3$ and $2 \times 4$ (in massless u-quark limit)
- Also $\mathbf{O}_{1-4}$ are scalar, thus isotropic.
$O_{3}=g_{a b}^{i}\left(\bar{u}_{a} L u_{b}^{c}\right) g_{c d}^{i}\left(\bar{t}_{c}^{c} R t_{d}\right)$
$O_{4}=g_{a b}^{i}\left(\bar{u}_{a} R u_{b}^{c}\right) g_{c d}^{i}\left(\bar{t}_{c}^{c} L t_{d}\right)$
$O_{5}=h_{a b}^{j}\left(\bar{u}_{a} \gamma^{\mu} u_{b}^{c}\right) h_{c d}^{j}\left(\bar{t}_{c}^{c} \gamma_{\mu} t_{d}\right)$
$O_{6}=g_{a b}^{i}\left(\bar{u}_{a} \gamma^{\mu} \gamma^{5} u_{b}^{c}\right) g_{c d}^{i}\left(\bar{t}_{c}^{c} \gamma_{\mu} \gamma^{5} t_{d}\right)$
$O_{7}=h_{a b}^{j}\left(\bar{u}_{a} \sigma^{\mu \nu} L u_{b}^{c}\right) h_{c d}^{j}\left(\bar{t}_{c}^{c} \sigma_{\mu \nu} L t_{d}\right)$
$O_{8}=h_{a b}^{j}\left(\bar{u}_{a} \sigma^{\mu \nu} R u_{b}^{c}\right) h_{c d}^{j}\left(\bar{t}_{c}^{c} \sigma_{\mu \nu} R t_{d}\right)$

$$
L_{e f f}^{\mathrm{dim}=6}=\sum_{i=1-8} C_{i} O_{i}
$$

Notation
abcd= color 3 indices
$i=$ color sextet index
$j=$ color $\overline{3}$ index
g: $3 \times 3 \rightarrow 6$ cg coefs
h: $3 \times 3 \rightarrow \overline{3} \mathbf{c g}$ coefs

## Distributions

- Total Cross section
$\sigma=\frac{\beta s}{288 \pi}\left[3\left(1+\beta^{2}\right) \sum_{i=1-4}\left|C_{i}\right|^{2}-6\left(1-\beta^{2}\right) \operatorname{Re}\left(C_{1} C_{3}^{*}+C_{2} C_{4}^{*}\right)+8\left(3-\beta^{2}\right) \sum_{i=5,7,8}\left|C_{i}\right|^{2}+32 \beta^{2}\left|C_{6}\right|^{2}\right]$
- Top Angular Distribution
- Define $\theta_{+}$to be the angle between a u-quark and a $\dagger$-quark in parton rest frame
- Define $\mathrm{z}=\cos \theta_{t}$

$$
\begin{aligned}
\frac{d \sigma}{d z} \propto & 3\left(1+\beta^{2}\right) \sum_{i=1-4}\left|C_{i}\right|^{2}-6\left(1-\beta^{2}\right) \operatorname{Re}\left(C_{1} C_{3}^{*}+C_{2} C_{4}^{*}\right) \\
& +12\left(2-\beta^{2}+\beta^{2} z^{2}\right)\left|C_{5}\right|^{2}+24\left(1+z^{2}\right) \beta^{2}\left|C_{6}\right|^{2} \\
& +24\left(1-\beta^{2}+2 \beta^{2} z^{2}\right)\left(\left|C_{7}\right|^{2}+\left|C_{8}\right|^{2}\right)
\end{aligned}
$$

- Conclusion: $O_{1-4}$ are isotropic
- $z^{2}$ term is a linear combination of $\mathrm{O}_{5-8}$
- This term must be positive


## Lepton Distributions

- Define $\theta_{1}$ as the angle between lepton 1 and top 2 in the top 1 rest frame
- Define $\theta_{2}$ Likewise.

- Let $c_{i}=\cos \theta_{i}$.
- In general the distribution in these variables will have the form

$$
\frac{d \sigma}{d c_{1} d c_{2}}=A+B\left(c_{1}+c_{2}\right)+C c_{1} c_{2}
$$

## Lepton Distributions cont.

$$
\begin{gathered}
\frac{d \sigma}{d c_{1} d c_{2}}=A+B\left(c_{1}+c_{2}\right)+C c_{1} C_{2} \\
A \propto 3\left(1+\beta^{2}\right) \sum_{i=1-4}\left|C_{i}\right|^{2}-6\left(1-\beta^{2}\right) \operatorname{Re}\left(C_{1} C_{3}^{*}+C_{2} C_{4}^{*}\right)+8\left(3-\beta^{2}\right) \sum_{i=5,7,8}\left|C_{i}\right|^{2}+32 \beta^{2}\left|C_{6}\right|^{2} \\
B \propto 6\left(\left|C_{1}\right|^{2}+\left|C_{4}\right|^{2}-\left|C_{2}\right|^{2}-\left|C_{3}\right|^{2}\right)+16\left(\left|C_{7}\right|^{2}-\left|C_{8}\right|^{2}\right) \\
C \propto 3\left(1+\beta^{2}\right) \sum_{i=1=-4}\left|C_{i}\right|^{2}-6\left(1-\beta^{2}\right) \operatorname{Re}\left(C_{1} C_{3}^{*}+C_{2} C_{4}^{*}\right)+8\left(3-\beta^{2}\right) \sum_{i=5,7,8}\left|C_{i}\right|^{2}+32 \beta^{2}\left|C_{6}\right|^{2}
\end{gathered}
$$

Note that $B$ is proportional to the helicity of the top pairs produced by the scalar and tensor operators but gets no contribution from the vector operators.

## Azimuthal Angular Distribution

Let us define $\Delta \phi$ to be the difference between the azimuthal angle of the Leptons and $\bar{\phi}$ to be the average angle.


In General, this angular distribution has the form

$$
\frac{d \sigma}{d(\Delta \phi) d \bar{\phi}} \propto \sigma+s^{2} \beta^{2} \pi^{2}(U \cos \Delta \phi+V \cos 2 \bar{\phi}+W \sin \Delta \phi)
$$

## Azimuthal Angular Distribution cont.

$$
\begin{aligned}
& \frac{d \sigma}{d(\Delta \phi) d \bar{\phi}} \propto \sigma+s^{2} \beta^{2} \pi^{2}(U \cos \Delta \phi+V \cos 2 \bar{\phi}+\beta W \sin \Delta \phi) \\
& \begin{aligned}
U= & \left(1-\beta^{2}\right)\left(-\frac{3}{16}\left|C_{1}\right|^{2}-\frac{3}{16}\left|C_{2}\right|^{2}-\frac{3}{16}\left|C_{3}\right|^{2}-\frac{3}{16}\left|C_{4}\right|^{2}\right. \\
& \left.+\frac{1}{2}\left|C_{5}\right|^{2}+\frac{1}{2}\left|C_{7}\right|^{2}+\frac{1}{2}\left|C_{8}\right|^{2}\right)
\end{aligned} \\
& \quad-\frac{3}{8}\left(1+\beta^{2}\right) \operatorname{Re}\left(C_{1} C_{3}^{*}+C_{2} C_{4}^{*}\right) \\
& V=-\frac{1}{2}\left|C_{5}\right|^{2}+\left|C_{6}\right|^{2}+\left(1-\beta^{2}\right)\left(\left|C_{7}\right|^{2}+\left|C_{8}\right|^{2}\right) \\
& W=\frac{3}{4} \operatorname{Im}\left(C_{1} C_{3}^{*}-C_{2} C_{4}^{*}\right)
\end{aligned}
$$

CP odd

## What do we learn from Angular Distributions

- The $\cos \left(\theta_{+}\right)$distribution is flat for $O_{1-4}$ and concave for the others.
- The $c_{1} c_{2}$ distribution tells us about the helicity of the final state in particular for $O_{1-4}$ and $O_{7,8}$. In $\beta=1$ limit:

$$
\begin{array}{lll} 
& L L \rightarrow A: B: C \sim+1:-1:+1 & \\
& & O_{1} O_{4} O_{7} \\
& R R \rightarrow A: B: C \sim+1:+1:+1 & \\
\text { - } & R L+R L \rightarrow A: B: C \sim+1: O:-1 & O_{5} O_{8} O_{6}
\end{array}
$$

- The azimuthal angle distribution gives information about the phase between the LL and RR scalar operators.
- The $\sin \Delta \phi$ term is $P$-odd $T_{N}$-odd and may be $C P$ odd.
- We can't full solve for $C_{1-4}$ because we don't have information about the helicity of the initial state.


## NP Models

Various NP models can contribute to different combinations of the operators:

- Color sextet vector bosons [Zhang et. al PLB (2011)]
- Only $\mathrm{O}_{6}$

- Sextet Scalars: $\mathrm{O}_{1-4}$
- This is the only model that could give the $P$-odd distribution

- Flavor changing $Z^{\prime}$ :
- Only $O_{3} O_{4}$ and $O_{5}-O_{6}$

- Flavor changing $9^{*}$, for example from RS extradimension models:
- Only $\mathrm{O}_{3}$ or $\mathrm{O}_{4}$
- Flavor changing neutral scalar:

- Only $\mathrm{O}_{1}-\mathrm{O}_{7} / 4$ or $\mathrm{O}_{2}-\mathrm{O}_{8} / 4$ or $\mathrm{O}_{5}+\mathrm{O}_{6}$



## FB top asymmetry

- SM 7-9\% Tevatron results ~20\% (see previous talks)
- Some of the NP models which could produce same sign top pairs at the LHC could also contribute to the observed FB top asymmetry at the Tevatron.
- The effective Lagrangian approach we can provide a somewhat model independent mapping between these two signals.
- First, we need to write an effective Lagrangian for $u \bar{u} \rightarrow t \bar{t}$


## Effective Lagrangian for $\mathbf{u} \overline{\mathbf{u}} \rightarrow \mathbf{t} \overline{\mathbf{t}}$

\[

\]

## Relation between Lagrangians

- A priori there is no relation between these two effective lagrangians.
- However, we can consider a class of theories where the flavor matrix has symmetry.
- This idea can be implemented as follows:

$$
D(\bar{u} \Gamma t)(\bar{t} \Gamma u) \rightarrow C(\bar{u} \Gamma t)(\bar{u} \Gamma t)
$$

where
$|\mathrm{D}| \approx|\mathrm{C}|$


- This will be a good approximation in theories involving $t$-channel exchange (for example Jung et. al. PRD (2010))
- This will also apply in theories where box diagrams such as the scalar exchange model in Davoudiasl et. al. (2011)



## Relation between effective Lagrangians

$$
\begin{array}{ll}
P_{1} \rightarrow-\frac{1}{2} O_{1}+\frac{1}{8} O_{7} & P_{1}^{\dagger} \rightarrow-\frac{1}{2} O_{2}+\frac{1}{8} O_{8} \\
P_{2} \rightarrow-\frac{1}{6} O_{1}-\frac{1}{12} O_{7} & P_{2}^{\dagger} \rightarrow-\frac{1}{6} O_{2}-\frac{1}{12} O_{8} \\
P_{3} \rightarrow \frac{1}{2} O_{5}+\frac{1}{2} O_{6} & P_{4} \rightarrow-\frac{1}{3} O_{5}+\frac{1}{6} O_{6} \\
P_{5} \rightarrow \frac{1}{2} O_{5}+\frac{1}{2} O_{6} & P_{5} \rightarrow-\frac{1}{3} O_{5}+\frac{1}{6} O_{6} \\
P_{7} \rightarrow 2 O_{4} & P_{8} \rightarrow \frac{3}{2} O_{4} \\
P_{9} \rightarrow 2 O_{3} & P_{10} \rightarrow \frac{3}{2} O_{3} \\
P_{11} \rightarrow O_{5}-O_{6} & P_{12} \rightarrow-\frac{2}{3} O_{5}-\frac{1}{3} O_{6} \\
P_{13} \rightarrow 6 O_{1}+\frac{1}{2} O_{7} & P_{14} \rightarrow 2 O_{1}-\frac{1}{3} O_{7} \\
P_{13}^{\dagger} \rightarrow 6 O_{2}+\frac{1}{2} O_{8} & P_{14}^{\dagger} \rightarrow 2 O_{2}-\frac{1}{3} O_{8}
\end{array}
$$

## Other NP Which Doesn't Work

- For other NP models this symmetry will not apply, for example
- If flavor is conserved NP can contribute to FB asymmetry but not same sign top pairs
- e.g. flavor diagonal $Z^{\prime}$
- The symmetry may not apply to diquark models such as the sextet vector. This gives same sign top pairs but may not contribute to FB asymmetry.


## Conclusion

- Same sign top pairs (with leptonic decays) at the LHC would be an unmistakable signal for NP
- An effective Lagrangian model for this signal has 8 terms
- The angular distribution of the leptons will constrain the operator coefficients. In particular
- $\cos \theta_{+}$checks if operators are scalar.
- $c_{1}-c_{2}$ distribution gives the helicity structure of the final state.
- Azimuthal distribution checks for CP violation and gives more info.
- In a wide class of models, there will be a symmetry with terms operators that can contribute to FB asymmetry at the Tevatron.

