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Brief Summary of Current Cosmological Constraints

From the Cosmic Microwave Background (CMB) we know the universe is very 
close to flat,

Also from CMB, primordial fluctuation spectrum consistent with inflation (super- 
horizon fluctuations with a nearly scale-invariant spectrum,            ), Gaussianity, 
and no tensor fluctuations (stochastic gravity waves).

From measuring the recent expansion history, using standard candles (type-Ia 
Supernovae, SN) or standard rulers (Baryon Acoustic Oscillations, BAO), we 
infer the universe is accelerating.

The acceleration is consistent with the simplest model (a cosmological constant
  , with                 and equation of state                       ), but uncertainties are 
still large and more generic models (dark energy with arbitrary equation of 
state, or large-scale modifications of GR) are allowed.  

Ωtot = 1 or Ωk = 0 (Ωi = ρi/ρcritical)

ns ∼ 1

Λ ΩΛ ∼ 0.7 w ≡ p/ρ = −1
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Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

systematic error is minimized by calibrating su-
pernova luminosities directly using the geometric
maser distance measurements. This is a significant
improvement over the prior that we adopted for
the 5-year analysis, H0 = 72 ± 8 km s−1 Mpc−1,
which is from the Hubble Key Project final results
(Freedman et al. 2001).

• Gaussian priors on the distance ratios, rs/DV (z =
0.2) = 0.1905 ± 0.0061 and rs/DV (z = 0.35) =
0.1097 ± 0.0036, measured from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS) and the
Sloan Digital Sky Survey Data Release 7 (SDSS
DR7) (Percival et al. 2009). The inverse covariance
matrix is given by equation (5) of Percival et al.
(2009). These priors are improvements from those
we adopted for the 5-year analysis, rs/DV (z =
0.2) = 0.1980 ± 0.0058 and rs/DV (z = 0.35) =
0.1094± 0.0033 (Percival et al. 2007).

The above measurements can be translated into a
measurement of rs/DV (z) at a single, “pivot” red-
shift: rs/DV (z = 0.275) = 0.1390 ± 0.0037 (Per-
cival et al. 2009). Kazin et al. (2010) used the
two-point correlation function of SDSS-DR7 LRGs
to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an
excellent agreement with the above measurement
by Percival et al. (2009) at a similar redshift. The
excellent agreement between these two independent
studies, which are based on very different methods,

indicates that the systematic error in the derived
values of rs/DV (z) may be much smaller than the
statistical error.

Here, rs is the comoving sound horizon size at the
baryon drag epoch zd,

rs(zd) =
c√
3

∫ 1/(1+zd)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
. (15)

For zd, we use the fitting formula proposed by
Eisenstein & Hu (1998). The effective distance
measure, DV (z) (Eisenstein et al. 2005), is given
by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular
diameter distance:

DA(z) =
c

H0

fk
[

H0

√

|Ωk|
∫ z
0

dz′

H(z′)

]

(1 + z)
√

|Ωk|
, (17)

where fk[x] = sinx, x, and sinhx for Ωk < 0
(k = 1; positively curved), Ωk = 0 (k = 0; flat),
and Ωk > 0 (k = −1; negatively curved), respec-
tively. The Hubble expansion rate, which has con-
tributions from baryons, cold dark matter, pho-
tons, massless and massive neutrinos, curvature,
and dark energy, is given by equation (27) in Sec-
tion 3.3.
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TABLE 1
Summary of the cosmological parameters of ΛCDM model

Class Parameter WMAP 7-year MLa WMAP+BAO+H0 ML WMAP 7-year Meanb WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.270 2.246 2.258+0.057

−0.056 2.260± 0.053
Ωch2 0.1107 0.1120 0.1109 ± 0.0056 0.1123± 0.0035
ΩΛ 0.738 0.728 0.734 ± 0.029 0.728+0.015

−0.016
ns 0.969 0.961 0.963 ± 0.014 0.963± 0.012
τ 0.086 0.087 0.088 ± 0.015 0.087± 0.014

∆2
R
(k0)c 2.38× 10−9 2.45× 10−9 (2.43 ± 0.11) × 10−9 (2.441+0.088

−0.092)× 10−9

Derived σ8 0.803 0.807 0.801 ± 0.030 0.809± 0.024
H0 71.4 km/s/Mpc 70.2 km/s/Mpc 71.0 ± 2.5 km/s/Mpc 70.4+1.3

−1.4 km/s/Mpc
Ωb 0.0445 0.0455 0.0449 ± 0.0028 0.0456± 0.0016
Ωc 0.217 0.227 0.222 ± 0.026 0.227± 0.014

Ωmh2 0.1334 0.1344 0.1334+0.0056
−0.0055 0.1349± 0.0036

zreiond 10.3 10.5 10.5± 1.2 10.4± 1.2
t0e 13.71 Gyr 13.78 Gyr 13.75± 0.13 Gyr 13.75 ± 0.11 Gyr

aLarson et al. (2010). “ML” refers to the Maximum Likelihood parameters.
bLarson et al. (2010). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors show
the 68% confidence levels (CL).
c∆2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
d“Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized state at
zreion. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009b), largely because of the
changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).
eThe present-day age of the universe.

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model

except for dark energy parameters

Sec. Name Case WMAP 7-year WMAP+BAO+SNa WMAP+BAO+H0

§ 4.1 Grav. Waveb No Running Ind. r < 0.36c r < 0.20 r < 0.24
§ 4.2 Running Index No Grav. Wave −0.084 < dns/d lnk < 0.020c −0.065 < dns/d lnk < 0.010 −0.061 < dns/d ln k < 0.017
§ 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
§ 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
§ 4.5 Parity Violation Chern-Simonsd −5.0◦ < ∆α < 2.8◦e N/A N/A
§ 4.6 Neutrino Massf w = −1

∑

mν < 1.3 eVc ∑

mν < 0.71 eV
∑

mν < 0.58 eVg

w #= −1
∑

mν < 1.4 eVc ∑

mν < 0.91 eV
∑

mν < 1.3 eVh

§ 4.7 Relativistic Species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

§ 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < fequil
NL < 266 N/A N/A

Orthogonal −410 < forthog
NL < 6 N/A N/A

a“SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009b), which is an extension of the “Union”
sample (Kowalski et al. 2008) that we used for the 5-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009b). Systematic
errors in the supernova data are not included. While the parameters in this column can be compared directly to the 5-year WMAP+BAO+SN
parameters, they may not be as robust as the “WMAP+BAO+H0” parameters, as the other compilations of the supernova data do not give
the same answers (Hicken et al. 2009b; Kessler et al. 2009). See Section 3.2.4 for more discussion. The SN data will be used to put limits on
dark energy properties. See Section 5 and Table 4.
bIn the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
cLarson et al. (2010).
dFor an interaction of the form given by [φ(t)/M ]Fαβ F̃αβ , the polarization rotation angle is ∆α = M−1

∫

dt
a
φ̇.

eThe 68% CL limit is ∆α = −1.1◦ ± 1.3◦ (stat.)± 1.5◦ (syst.), where the first error is statistical and the second error is systematic.
f∑mν = 94(Ωνh2) eV.
gFor WMAP+LRG+H0,

∑

mν < 0.44 eV.
hFor WMAP+LRG+H0,

∑

mν < 0.71 eV.
iThe 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0, Neff = 4.25± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
jV+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
kWhen combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

Komatsu et al (2010)

WMAP 7-year results
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TABLE 7
Primordial tilt ns, running index dns/d ln k, and tensor-to-scalar ratio r

Section Model Parametera 7-year WMAPb WMAP+ACBAR+QUaDc WMAP+BAO+H0

Section 4.1 Power-law ns 0.963± 0.014 0.962+0.014
−0.013 0.963 ± 0.012

Section 4.2 Running ns 1.027+0.050
−0.051

d 1.041+0.045
−0.046 1.008± 0.042e

dns/d ln k −0.034 ± 0.026 −0.041+0.022
−0.023 −0.022± 0.020

Section 4.1 Tensor ns 0.982+0.020
−0.019 0.979+0.018

−0.019 0.973 ± 0.014
r < 0.36 (95% CL) < 0.33 (95% CL) < 0.24 (95% CL)

Section 4.2 Running ns 1.076± 0.065 1.070 ± 0.060
+Tensor r < 0.49 (95% CL) N/A < 0.49 (95% CL)

dns/d ln k −0.048 ± 0.029 −0.042 ± 0.024

aDefined at k0 = 0.002 Mpc−1.
bLarson et al. (2010).
cACBAR (Reichardt et al. 2009); QUaD (Brown et al. 2009).
dAt the pivot point for WMAP only, where ns and dns/d lnk are uncorrelated, ns(kpivot) = 0.964 ± 0.014.
The “pivot wavenumber” may be defined in two ways: (i) kpivot = 0.0805 Mpc−1 from ns(kpivot) =
ns(k0) +

1
2 (dns/d lnk) ln(kpivot/k0), or (ii) kpivot = 0.0125 Mpc−1 from d ln∆2

R
/d lnk

∣

∣

k=kpivot
= ns(k0) −

1 + (dns/d lnk) ln(kpivot/k0).
eAt the pivot point for WMAP+BAO+H0, where ns and dns/d ln k are uncorrelated, ns(kpivot) = 0.964 ±

0.013. The “pivot wavenumber” may be defined in two ways: (i) kpivot = 0.106 Mpc−1 from ns(kpivot) =
ns(k0) +

1
2
(dns/d ln k) ln(kpivot/k0), or (ii) kpivot = 0.0155 Mpc−1 from d ln∆2

R
/d lnk

∣

∣

k=kpivot
= ns(k0)− 1+

(dns/d ln k) ln(kpivot/k0).

None of these data combinations require
dns/d ln k: improvements in a goodness-of-fit rel-
ative to a power-law model (equation (29)) are
∆χ2 = −2 ln(Lrunning/Lpower−law) = −1.2, −2.6, and
−0.72 for the WMAP-only, WMAP+ACBAR+QUaD,
and WMAP+BAO+H0, respectively. See Table 7 for
the case where both r and dns/d ln k are allowed to vary.
A simple power-law primordial power spectrum with-

out tensor modes continues to be an excellent fit to the
data. While we have not done a non-parametric study
of the shape of the power spectrum, recent studies after
the 5-year data release continue to show that there is no
convincing deviation from a simple power-law spectrum
(Peiris & Verde 2010; Ichiki et al. 2009; Hamann et al.
2009).

4.3. Spatial Curvature

While the WMAP data alone cannot constrain the spa-
tial curvature parameter of the observable universe, Ωk,
very well, combining the WMAP data with other dis-
tance indicators such as H0, BAO, or supernovae can
constrain Ωk (e.g., Spergel et al. 2007).
Assuming a ΛCDM model (w = −1), we find

−0.0133 < Ωk < 0.0084 (95% CL),

from WMAP+BAO+H0.22 However, the limit weakens
significantly if dark energy is allowed to be dynamical,
w "= −1, as this data combination, WMAP+BAO+H0,
cannot constrain w very well. We need additional infor-
mation from Type Ia supernovae to constrain w and Ωk
simultaneously (see Section 5.3 of Komatsu et al. 2009b).
We shall explore this possibility in Section 5.

4.4. Non-Adiabaticity: Implications for Axions

Non-adiabatic fluctuations are a powerful probe of the
origin of matter and the physics of inflation. Follow-
ing Section 3.6 of Komatsu et al. (2009b), we focus on

22 The 68% CL limit is Ωk = −0.0023+0.0054
−0.0056 .

two physically motivated models for non-adiabatic fluc-
tuations: axion-type (Seckel & Turner 1985; Linde 1985,
1991; Turner & Wilczek 1991) and curvaton-type (Linde
& Mukhanov 1997; Lyth & Wands 2003; Moroi & Taka-
hashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum of
S and that of the curvature perturbation R (e.g., Bean
et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al. 2010).
With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of

23 The limits on α can also be converted into the numbers show-
ing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2 [δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009b).
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Fig. 2.— Confidence contours in the cosmological parameters Ωm and w arising from fits to the

combined SN Ia sample using the marginalization fitting approach, illustrating various systematic

effects in the cosmological fits. In all panels, the SNLS3 SN Ia contours are shown in blue, and

combined BAO/WMAP7 constraints (Percival et al. 2010; Komatsu et al. 2011) in green. The

combined constraints are shown in grey. The contours enclose 68.3%, 95.4% and 99.7% of the

probability, and the horizontal line shows the value of the cosmological constant, w = −1. Upper

left: The baseline fit, where the SNLS3 contours include statistical and all identified systematic

uncertainties. Upper right: The filled SNLS3 contours include statistical uncertainties only; the

dotted open contours refer to the baseline fit with all systematics included. Lower left: The filled

SNLS3 contours exclude the SN Ia systematic uncertainties related to calibration. Lower right:

The filled SNLS3 contours result from fixing α and β in the cosmological fits. See Table 2 and

Table 3 for numerical data.

SNLS 3-year results

Sullivan et al (2011)
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Fig. 4.— Confidence contours in the cosmological parameters Ωm and w assuming a flat universe,

produced using the CosmoMC program. The SNLS3 contours are in blue, the SDSS DR7 LRG

contours in green, and the H0 prior in red. WMAP7 constraints are included in all contours. The

contours enclose 68.3% and 95.4% of the probability and include all SN systematic uncertainties.

The dashed line indicates w = −1. Numerical results are in Table 4.

Sullivan et al (2011)



– 32 –

14

16

18

20

22

24

26

m
co

rr =
 m

B +
 !

 (s
 −

 1
) −

 "
 C

Low−z

SDSS SNLS

HST

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

m
co

rr
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Conley et al (2011)

SNLS 3-year results (+ other SN)

123 low − z + 93 SDSS + 242 SNLS + 14 HST
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Fig. 8.— Ωm,ΩΛ (i.e., w = −1, but allowing for non-zero spatial curvature) contours includ-

ing all identified systematic uncertainties.

Table 8: Tension between different SN samples

Sample Mean offset (mag) Uncertainty N

low-z -0.027 0.024 123

SDSS 0.020 0.027 93

SNLS 0.023 0.023 242

HST 0.043 0.072 14

Calán/Tololo -0.027 0.046 17

CfAI 0.064 0.062 7

CfAII 0.051 0.049 15

CfAIII -0.047 0.034 58

CSP 0.052 0.057 14

Other 0.052 0.057 12

SN alone require cosmic acceleration at > 99.999%

SNLS 3-year results

Conley et al (2011)



Cosmic Acceleration and Inflation

- The universe’s expansion is at present accelerating: why?

- The large-scale structure we see in CMB and galaxy surveys can be explained 
by gravitational instability from primordial fluctuations generated during inflation: 
what’s the physics of inflation?

Both these questions can be addressed with large galaxy surveys presently under 
construction.



Galaxy Redshift Surveys

- It’s a map of the three-dimensional distribution of galaxies in the universe.

- The observables are angles in the sky plus the redshift of galaxy.

- Redshifts are due to recession velocities caused by the expansion of the 
universe (which through Hubble’s law v=H*r can be translated into a distance).

- However,  in a clumpy universe, there are also dynamical velocities (from 
gravitational interactions between galaxies) that contribute to recession 
velocities: thus radial distances are “distorted” by gravitational dynamics.

The primary example of a Galaxy Redshift Survey is the Sloan Digital Sky Survey 
(SDSS)



The Sloan Digital Sky Survey 
LRG Sample

>100,00 LRGs  0.16<z<0.47
  Sky Coverage ~8,000 degree2

  V= 1.6 h-3Gpc3 of which:
       quasi-volume Limited until  
       z<0.36 (0.66 h-3Gpc3)

sdss.org

Legacy DR7 Spectral Sky Coverage 
(Aitoff projection of Equatorial coordinates)z

n(z)
[10-4h3Mpc-3]

quasi-
volume
limited

flux
limited

sample available at:   http://cosmo.nyu.edu/~eak306/SDSS-LRG.html

comoving density

9



“LRG Sample” of  SDSS II
z~0.35



The Next Frontier: BOSS

- Baryon Oscillation Spectroscopic Survey (BOSS) is part of SDSS-III

- 1.6 million galaxies between z=0.2 and z=0.7

- 2009-2014

- 10,000 sq deg 

- geared towards constraining the physics of acceleration from the BAO method 
(measuring 1% distances to z=0.35, 0.6)

- will also constrain dark energy / modified gravity from redshift-space 
distortions, inflation from improved cosmological parameters + primordial non-
Gaussianity



BOSS



Redshift Distortions
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Velocity-Dispersion Effect
(aka Finger of God)

effects small scales ~ few Mpc

Real Comoving Space Redshift Space

Redshift Space

Squashing Effect
effects large scales ~10’sMpc
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Δ!H Δ!S
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r⊥ = s⊥

r‖
s‖

v

v

1 + ξs(s‖, s⊥) =

∫ ∞

−∞
dr‖ [1 + ξ(r)] P(r‖ − s‖, r),

{

vp

An exact relationship between real and redshift-space clustering:

Everything is encoded in the pairwise velocities PDF.

real-space
separationredshift-space

 separation



Ps(k, µ) = Pg(k) (1 + βµ2)2
1

1 + k2µ2σ2
p/2

,

These are incorporated into the so-called “dispersion model”, for the power 
spectrum, 

which is used to constrain cosmological parameters from redshift surveys.

- f is the most interesting part: it depends on the theory of gravity, e.g.

- b is the linear bias (that relates matter to galaxy clustering), can be obtained 
from the same data by measuring the galaxy bispectrum.

β =
f

b1
, kµ = kz, σ2

p = pairwise velocity dispersion

f = Ωγ
m, γ ≈ 0.56 (GR), 0.68 (DGP)



Another possibility is that we are witnessing deviations of Einstein’s GR at 
cosmic scales (comparable to H-radius today)

In these modified gravity (MG) models, gravity is weaker at cosmological scales, 
leading to acceleration with normal matter (i.e. without the need for DE).

 For example, some theories postulate that the graviton is “massive”, in a 
nutshell, the small value of the cosmological constant is traded for a small 

“mass” for the graviton.

Cosmic Acceleration

One possible explanation in the context of GR is that the universe is presently 
dominated by dark energy (DE), a component with strong negative pressure. 



PROBING MODIFIED GRAVITY

Cosmic Acceleration: Dark Energy or Modified Gravity?

Expansion History is not enough to tell them apart: 
need growth of structure

In DE models, growth of structure results from a competition between 
expansion of the universe and Einstein’s gravity. 

In MG models, for the same (observed) expansion history, modification of 
gravity will give a different growth rate at late times.

BAO, Supernovae and Weak Lensing observations will give a precise 
determination of the expansion history of the universe since z=2 up to present.



Modifying Gravity at Large Scales
- GR is an extremely constrained theory (basically follows 
from massless graviton plus general covariance)

- Any deviation from it implies gravity cannot be meditated 
by a massless spin-2 particle:  New degrees of freedom 
expected

- “True” gravity modification leads to changes in the spin-2 
sector (new polarizations for the graviton). Extra 
polarizations must be suppressed at small scales for 
consistency with solar system tests.

- In cosmological setting, this is typically done through 
nonlinear effects, leading to observational signatures



nonlinear effects make 
theory approach GR 

at small scales

transition to 5D regime

linear approximation

Example from DGP (brane-induced) gravity



Growth of Structure in DGP Gravity

Lue et al. (2004)
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Figure 8. Measurements of the growth rate of structure weighted by a redshift-dependent normalization, f(z) σ8(z), obtained in four
redshift slices by fitting WiggleZ Survey data. We assume the Jennings et al. (2011) model for non-linear redshift-space distortions,
with a variable damping parameter, and fit to the scale range k < 0.3h Mpc−1. The WiggleZ measurements are compared to results
previously published for the 2dFGRS, SDSS-LRG, and VVDS samples (black open circles) as collected by Song & Percival (2009). The
prediction of a flat ΛCDM cosmological model with Ωm = 0.27 is also shown.

Equation 4 may be re-written for a general cross-
correlation parameter r as

Pg(k, µ) = b2Pδδ(k)− 2µ2brPδθ(k) + µ4Pθθ(k) , (14)

and assuming a model for the three power spectra Pδδ(k),
Pδθ(k) and Pθθ(k), the value of r may be extracted for each
scale k by marginalizing over b. In this investigation we fix
the value of the growth rate f at the value predicted by
the ΛCDM model, and we assume the Smith et al. (2003)
and Jennings et al. (2011) prescriptions for the density and
velocity power spectra. We also marginalized over a variable
damping parameter.

Figure 9 displays the measurement of r in independent
Fourier bins of width ∆k = 0.04 h Mpc−1 between k = 0.02
and 0.3h Mpc−1, combining the results for different redshift
slices and varying r within the range −1 ≤ r ≤ 1. We find
that the cross-correlation parameter is consistent with de-
terministic bias r = 1 (and this result also applies for each
separate redshift slice). Because the probability distribution
for r is asymmetric due to the hard upper limit, in the cases
when the confidence region is truncated at r = 1 we plot
in Figure 9 the range below r = 1 enclosing 68% of the
probability, and the position of the peak of the likelihood.

5 ANALYSIS OF THE POWER SPECTRUM

MOMENTS

5.1 Multipole moments of the power spectrum

In this Section we explore some alternative techniques for
quantifying the redshift-space power spectra which can vi-

Figure 9. The galaxy-mass cross-correlation parameter r as a
function of scale k, measured by fitting Equation 14 to the Wig-
gleZ power spectrum data assuming the growth rate predicted by
ΛCDM and marginalizing over linear bias and variable damping
factors. The measurements in different redshift slices are com-
bined.

sualize their information content more neatly. The galaxy
power spectrum P s

g (k, µ) may be decomposed in a basis
of Legendre polynomials L#(µ) to give multipole moments
P#(k):

P s
g (k, µ) =

∑

even #

P#(k)L#(µ) (15)

Measurement of f from redshift-distortions (Blake et al. 2011)



Primordial Non-Gaussianity

So far we assumed inflation gives rise to Gaussian  fluctuations in 
the gravitational potential. 

In the simplest models of single-field inflation, Gaussianity is a 
consequence of the slow-roll conditions, i.e. that the inflaton 

potential being very flat. Indeed, the bispectrum of the curvature 
perturbation (or gravitational potential) is generically,

Bζ ∼ (ns − 1) P
2

ζ

Since the tilt is constrained to be small (< 0.05), this is probably 
unobservable. 

Maldacena (2002)



Gaussianity is a consequence of:

i) inflaton a single scalar field
i) slowly rolling
ii) in vacuum state
iii) with canonical kinetic terms

which implies for it a bispectrum,

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias 
at large scales (Dalal et al 2008),

with b~1/k^2 at low-k. Thus the power spectrum of galaxies is sensitive to fnl!!

B = 2fNLP1P2 + cyc.

Φ = φ + fNLφ2

if we relax i) we have for the Bardeen potential,

b1(k) = b10 + ∆b1(k, fNL)

−10 < f local
NL < 74



This modification of the O(f2
NL) quadratic bias pa-

rameter may be probed through measurements of

the halo bispectrum as a function of triangle shape.

It arises from the same effect that can change the

scaling in the low-k limit for the linear bias, from

contributions of the K(�) kernel that couples two

short φs modes.

Finally, note that these results are for the La-
grangian quadratic bias parameters, what we need

to compare against simulations is to compute their

Eulerian counterparts. This is a standard procedure

usually done in the spherical collapse approximation

(see e.g. [28, 29, 66]) or, more accurately, full per-

turbation theory. We leave this for an upcoming

work where we implement these PBS predictions for

the bispectrum and compare against simulations for

halos and mock galaxy catalogs.

IV. COMPARISON WITH SIMULATIONS

We now contrast our predictions for large-scale

linear bias with measurements in the simulations

discussed in section II E. Since our predictions for

the scale-dependent bias from PNG should be more

widely valid than the standard results based on uni-

versality and Markovian evolution, our primary goal

here is to test for the amplitude of this scale de-

pendence. Previous results in the literature on this

proceed by modeling the full bias factor, including

scale-dependent and independent contributions, see

e.g. [39, 61, 62, 66–70], and there is no consensus

about whether a ‘fudge factor’ is needed to properly

account for the amplitude of scale-dependence for

local PNG.

There are many reasons why this might be the

case. First, not all works used the same halo def-

initions, we explore the dependence on halo defi-

nition below. Second, there is the impact on halo

bias from from transients induced by setting up ini-

tial conditions in the simulations [40]. For exam-

ple, we find that using Zel’dovich initial conditions

instead of 2LPT at z = 49 for local PNG with

fNL = 100 leads to a z = 1 halo power spectrum

(M = 1013 − 1014M⊙/h) that is larger by 14% at

k = 0.003 h Mpc
−1

and 3% at k >∼ 0.05 h Mpc
−1

.

These transients also induce artificial violations of

universality.

From the theoretical point of view, deviations

FIG. 4. The bias for FOF0.156 halos as a function of

scale for Gaussian and local, orthogonal and equilateral

PNG initial conditions. Since cosmic variance is domi-

nated by its Gaussian contribution, we only show error

bars on the local PNG case for clarity. The equilateral

and Gaussian case are very close to each other, whereas

the orthogonal template (fNL = −400, blue dashed lines)

is in between them and local (fNL = 100, red dotted) for

significantly biased objects (top two panels), but below

the Gaussian (black solid) and equilateral (fNL = −400,

green solid) case for low-mass halos at z = 0.

from the standard predictions are expected by vi-

olations of Markovianity and universality. While

deviations from the former have not yet been es-

tablished in a precise quantitative way, there is a

significant body of work showing that universality

of the mass function does not hold at the 5-10%

level [40, 52, 53, 71–73] for FOF halos, with more sig-

nificant deviations for spherical overdensity (SO) ha-

los [73]. In addition, the peak-background split cal-

culations for Gaussian initial conditions show sim-

ilar deviations [52, 53, 74]. In this case, however,

there is the extra complication in going from the

bias parameters in the expansion of perturbations

to the bias parameters that appear in the correla-

tors such as the power spectrum, which will differ in

general by renormalizations induced by loop correc-

tions [51, 75, 76].

23

Scale-dependent Bias from Power Spectrum

Halos in numerical simulations (R.S. et al. 2011)

b(k) =
Pgm

Pmm
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FIG. 4: This figure shows the median value (red points) and 1,2 and 3-sigma limits on fNL obtained from different probes
(vertical lines). The data set used are, from top to bottom: Photometric LRGs, Photometric LRGs with only slices 0–4 used,
Spectroscopic LRGs, Integrated Sach Wolfe effect, photometric QSO, photometric QSOs using b(z) ∝ 1/D(z) biasing scheme
(see Section IIIC), photometric QSOs using alternative χ2 calculation scheme (see Section III C), using a scale dependent bias
formula appropriate for recently merged halos (Section II C), Combined sample, Combined sample using a scale dependent bias
formula appropriate for recently merged halos (for QSO), the last two resoluts to which a statistically independent WMAP 5
bispectrum fNL constraint was added. See text for discussion.

has been smeared out. The QSO plot again shows simi-
lar behaviour, with two caveats. First, the changes in the
predicted power spectrum on small scales are a result of
the fact that bdn/dz is perturbed with changing fNL, al-
though this is a minor effect. Second, the increase in the
power at smallest ! for negative fNL is due to the fact that
for sufficiently negative fNL (or sufficiently large scales),
δb < −2b and hence power spectrum rises again above
what is expected in the Gaussian case. The more unex-
pected is the NVSS-CMB cross-correlation. Naively, one
would expect that the first point of that plot will produce
a very strong fNL “detection”. However, the CMB cross-
correlation signal is only linearly dependent on fNL, while
cross-correlations of NVSS with other tracers of struc-
ture are quadratically dependent on fNL. Large values

of fNL produce anomalously large power in the angular
power spectrum if bdn/dz has significant contributution
at high-z tail, which probes large scales. Therefore, the
bdn/dz fitting procedure skews the distribution towards
lower redshifts, leading to a lower bias overall. At very
large values, e.g. fNL = 800, this effect is so severe that
the b ∝ 1/D(z) scaling forces b < 1 at the low-redshift
end. This implies ∆b < 0, and the large-scale ISW sig-
nal actually goes negative (see top-left panel of Fig. 3).
Therefore, the ISW is surprisingly bad at discriminating
fNL and we were unable to fit the first NVSS ISW data
point with a positive fNL. This behavior is however only
of academic interest because the other data sets strongly
rule out these extreme values of fNL.

We ran a series of MCMC chains with base cosmolog-

SDSS II Constraints on local PNG from power spectrum (Slosar et al. 2008)

−29 < f loc
NL < 70 (2σ)
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Beyond Local Primordial Non-Gaussianity

- Within single-field inflationary models, we can break Gaussianity by 
introducing non-canonical kinetic terms, leading to the so-called equilateral 
and orthogonal shapes for the primordial bispectrum. 

For example, the equilateral model has a Bardeen potential bispectrum,

(permutations are understood), whereas the orthogonal model reads

(6fNL)−1Bequil = −P1P2 − 2(P1P2P3)2/3 + P 1/3
1 P 2/3

2 P3

(6fNL)−1Bortho = −3P1P2 − 8(P1P2P3)2/3 + 3P 1/3
1 P 2/3

2 P3

−214 < f equil
NL < 266

−410 < fortho
NL < 6



This modification of the O(f2
NL) quadratic bias pa-

rameter may be probed through measurements of

the halo bispectrum as a function of triangle shape.

It arises from the same effect that can change the

scaling in the low-k limit for the linear bias, from

contributions of the K(�) kernel that couples two

short φs modes.

Finally, note that these results are for the La-
grangian quadratic bias parameters, what we need

to compare against simulations is to compute their

Eulerian counterparts. This is a standard procedure

usually done in the spherical collapse approximation

(see e.g. [28, 29, 66]) or, more accurately, full per-

turbation theory. We leave this for an upcoming

work where we implement these PBS predictions for

the bispectrum and compare against simulations for

halos and mock galaxy catalogs.

IV. COMPARISON WITH SIMULATIONS

We now contrast our predictions for large-scale

linear bias with measurements in the simulations

discussed in section II E. Since our predictions for

the scale-dependent bias from PNG should be more

widely valid than the standard results based on uni-

versality and Markovian evolution, our primary goal

here is to test for the amplitude of this scale de-

pendence. Previous results in the literature on this

proceed by modeling the full bias factor, including

scale-dependent and independent contributions, see

e.g. [39, 61, 62, 66–70], and there is no consensus

about whether a ‘fudge factor’ is needed to properly

account for the amplitude of scale-dependence for

local PNG.

There are many reasons why this might be the

case. First, not all works used the same halo def-

initions, we explore the dependence on halo defi-

nition below. Second, there is the impact on halo

bias from from transients induced by setting up ini-

tial conditions in the simulations [40]. For exam-

ple, we find that using Zel’dovich initial conditions

instead of 2LPT at z = 49 for local PNG with

fNL = 100 leads to a z = 1 halo power spectrum

(M = 1013 − 1014M⊙/h) that is larger by 14% at

k = 0.003 h Mpc
−1

and 3% at k >∼ 0.05 h Mpc
−1

.

These transients also induce artificial violations of

universality.

From the theoretical point of view, deviations

FIG. 4. The bias for FOF0.156 halos as a function of

scale for Gaussian and local, orthogonal and equilateral

PNG initial conditions. Since cosmic variance is domi-

nated by its Gaussian contribution, we only show error

bars on the local PNG case for clarity. The equilateral

and Gaussian case are very close to each other, whereas

the orthogonal template (fNL = −400, blue dashed lines)

is in between them and local (fNL = 100, red dotted) for

significantly biased objects (top two panels), but below

the Gaussian (black solid) and equilateral (fNL = −400,

green solid) case for low-mass halos at z = 0.

from the standard predictions are expected by vi-

olations of Markovianity and universality. While

deviations from the former have not yet been es-

tablished in a precise quantitative way, there is a

significant body of work showing that universality

of the mass function does not hold at the 5-10%

level [40, 52, 53, 71–73] for FOF halos, with more sig-

nificant deviations for spherical overdensity (SO) ha-

los [73]. In addition, the peak-background split cal-

culations for Gaussian initial conditions show sim-

ilar deviations [52, 53, 74]. In this case, however,

there is the extra complication in going from the

bias parameters in the expansion of perturbations

to the bias parameters that appear in the correla-

tors such as the power spectrum, which will differ in

general by renormalizations induced by loop correc-

tions [51, 75, 76].
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FIG. 1. The difference in dark matter reduced bis-
pectrum Q from that in the Gaussian initial condi-
tions case at redshift z = 0.97 for triangles with sides
k1 = 0.06 h Mpc−1 and k2 = 1.5 k1 as a function of angle
θ between k1 and k2. The deviations seen in the N-body
simulations agree with the expectations from linear per-
turbation theory evolution of the primordial bispectrum
(solid) for all three models considered: orthogonal (blue
pentagons, fNL = −400), local (red triangles, fNL = 100)
and equilateral (green squares, fNL = −400), from top
to bottom at θ = 0, π.

Our simulations are part of the LasDamas (Large

Suite of Dark Matter Simulations) collaboration [41]

runs, extended to PNG models. The cosmological

parameters are Ωm = 0.25, Ωb = 0.04, ΩΛ = 0.75,

h = 0.7, ns = 1 and σ8 = 0.8. For this paper we

present results based on 12 realizations of local (with

fNL = 100), equilateral (fNL = −400) and orthogo-

nal (fNL = −400) models run on a 2.4 h−1 Gpc box

with 12803 particles, using the Gadget2 code [42].

For each PNG model we thus have a total volume of

166( h−1 Gpc)3, the largest to date, which will allow

us to test theoretical predictions of large-scale bias

to a greater accuracy than before. For such choices

of fNL the skewness of the primordial density field

is positive for the local and orthogonal case, while

negative for the equilateral model. See [43] for a dis-

cussion of higher-order moments in these simulations

and mock galaxy catalogs built from them.

In Figure 1 we show the difference in the matter

density reduced bispectrum,

Q ≡ B

(P1P2 + P2P3 + P3P1)
, (36)

in each of the three models from the Gaussian initial

conditions case at z = 0.97 for triangles with sides

k1 = 0.06 h Mpc
−1

and k2 = 1.5 k1 as a function of

angle θ between k1 and k2. The symbols (with er-

ror bars obtained from the scatter among 12 realiza-

tions) denote the measurements, while the solid lines

correspond to the predictions of linear perturbation

theory evolution of the primordial bispectrum for

each of the models. We see a very good agreement,

which is further evidence that the initial conditions

in each case have been correctly generated.

Our 2LPT-PNG initial conditions algorithm, be-

ing a sum of separable terms for the kernel, is very

efficient. For non-local models the initial condition

generation takes only 35% longer than for local mod-

els, which for Npar = 12803 particles takes about 5

minutes in 320 cpus. This is several orders of mag-

nitude faster than summation over modes methods

that use non-separable kernels recently proposed in

the literature [37, 39], which scale as N2
par (as op-

posed to Npar lnNpar in our case).

III. THE PEAK-BACKGROUND SPLIT

A. Excursion-Set Basics

We now turn to a derivation of the expected clus-

tering in generic PNG models. For this purpose, it

is useful to briefly review the peak-background split

(PBS) argument that allows us to calculate the bias

of collapsed objects [44, 45]. We will comment on

how our approach differs from other accounts in the

literature below, and also contrast the PBS predic-

tions with local bias models.

In the excursion-set formalism [46], halo formation

can be described as a random walk of the smoothed

linear density field δ as the smoothing radius goes

from very large (infinitesimal variance σ2, and thus

tiny δ) to crossing the linear threshold for collapse

δc at some finite smoothing radius (which defines

8

forthNL = −400

fequi
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Bispectrum
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Future and Summary

Many independent cosmological probes paint a consistent picture.

Much more coming soon:

- Planck CMB satellite (much higher-resolution than WMAP), results expected by 
February 2013. 

- For SN, going from hundreds to thousands (PTF, PanSTARRS, Skymapper, DES) 
in the next ~5 years and tens of thousands eventually with LSST.

- Euclid (ESA satellite) just selected (launch 2019, 6 years at L2): galaxy 
clustering, weak lensing, SN

- BigBOSS will significantly improve BOSS results (again ~ 2019)



- We can use redshift-space distortions in combination with the bispectrum to 
constrain the velocity growth factor and thus modifications of gravity. 

- Different primordial non-Gaussianities motivated by inflation lead to significant 
changes in the galaxy bispectrum. BOSS will yield great statistical precision 
(competitive with Planck CMB satellite). First BOSS results expected 2012.

Both techniques in the next few years will give unprecedented constraints on 
fundamental physics of gravity and inflation.


