Search for New Physics in $B_{(s,d)} \rightarrow \mu^+ \mu^-$ decays at LHCb

Flavio Archilli LNF - INFN on behalf of the LHCb collaboration

Brookhaven Forum 2011 A First Glimpse of the Tera Scale

Monday, October 17, 11

$B_{s,d} \rightarrow \mu^+ \mu^-$ probe for NP

 $B_{s,d} \rightarrow \mu \mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

$$BR(B_{q} \to l^{+}l^{-}) \approx \frac{G_{F}^{2} \alpha^{2} M_{B_{q}}^{3} f_{B_{q}}^{2} \tau_{B_{q}}}{64\pi^{3} \sin^{4} \theta_{W}} |V_{tb} V_{tq}^{*}|^{2} \sqrt{1 - \frac{4m_{l}^{2}}{M_{B_{q}}^{2}}} \\ \left\{ M_{B_{q}}^{2} \left(1 - \frac{4m_{l}^{2}}{M_{B_{q}}^{2}}\right) c_{S}^{2} + \left[M_{B_{q}} c_{P} + \frac{2m_{l}}{M_{B_{q}}} (c_{A} - c_{A}') \right]^{2} \right\}.$$

Double suppressed decay: helicity and FCNC → very small BR in SM but well predicted:

 $BR(B_s \rightarrow \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$

$$BR(B_d \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$

→ sensitive to NP effects in scalar/pseudoscalar Higgs sector:

 $BR(B_{(d,s)} \rightarrow \mu^+ \mu^-) \propto \tan^6 \beta / M_A^4$ MSSM large tanß approximation

$B_{s,d} \rightarrow \mu^+ \mu^- at LHCb$

LHCb benefit from:

- Large cross section:
 - σ(pp→bbX) @ 7TeV ~ 300µb
- Large acceptance for B decays: $1.9 < \eta < 4.9$
 - $\epsilon_{acc} (B_{s,d} \rightarrow \mu^+ \mu^-) \sim 10\%$
- Very efficient muon trigger
- Good particle ID, tracking and reconstruction

LHCb already published one analysis based on 37pb⁻¹ from 2010 data

Physics Letter B 699 (2011)330-340

Observed BR($B_s \rightarrow \mu^+ \mu^-$) < 4.3 x 10⁻⁸ (5.6 x 10⁻⁸) @ 90 (95)% CL Expected: 5.1 (6.5) Observed BR($B_d \rightarrow \mu^+ \mu^-$) < 1.2 x 10⁻⁸ (1.5 x 10⁻⁸) @ 90 (95)% CL Expected: 1.4 (1.8)

we present an update based on 300 pb⁻¹ from the first 3 months of 2011 Assuming SM, we expect after selection 3.2 B_s and 0.32 B_d events in 300 pb⁻¹ LHCb has already collected 1fb⁻¹

Analysis strategy

- Selection
 - muon-based trigger
 - Soft selection to reduce size of dataset
 - Blind signal region (M_{Bd}-60MeV, M_{Bs} +60MeV)
- Signal/background discrimination:
 - MVA classifier BDT combining kinematic and geometrical properties
 - Invariant mass m_{µµ}
- Data driven calibration through control channels to get signal and background expectations
- Normalization: convert a number of observed events into a branching fraction by normalizing to channels of known BR
- Results:
 - Extract observation / exclusion measurement using the modified frequentist CLs method in bins of mass and BDT
 4

Boosted Decision Tree

Our main background is combinatorial from two real muons

- reduce it by using MVA classifier built using 9 variables related to the geometry and kinematic of the event
 - B impact parameter, B lifetime, muon isolation, DOCA, B Pt, minimum impact parameter of the muons
 - B isolation
 - Polarization variable
 - Minimum Pt of the muons
- Choice of variables to avoid correlation with invariant mass
- Optimization and training on MC, using $B_s \rightarrow \mu^+ \mu^-$ and $bb \rightarrow \mu \mu X$

BDT calibration

The BDT response is calibrated on data using:

- ▶ for signal we use $B_{(d,s)} \rightarrow h^+h^-$ events
 - same topology as $B_{(d,s)} \rightarrow \mu^+ \mu^-$
 - selected with hadronic trigger: use of events triggered independently of the signal (TIS)
- for background events in the mass sidebands

Background expectations

- The expected background events in signal regions are extracted from a fit of the mass sidebands divided in BDT bins
- Systematics evaluated using different fit functions and ranges

7

Other bkg sources

The dominant background is due to real muons from $bb \rightarrow \mu\mu X$ events.

The other sources of background are:

- proton-proton photoproduction
 - Isolated muons, possible high mass
 - But very low Pt efficiently removed by pT(B)> 500 MeV/c
- Background due to misidentified muons from $B_{d/s} \rightarrow h^+h^-$ decays
 - Evaluated from $B_{d/s} \rightarrow h^+h^-$ reweighted MC
 - Cross checked with control channels, requiring one muon in the final state

expected:

2.5±0.5 misID events in B_d region \rightarrow 0.6±0.1 per BDT bin 0.5±0.4 misID events in B_s region \rightarrow 0.1±0.1 per BDT bin

Signal Invariant Mass

The invariant mass is modeled with a Crystal Ball

- Resolution: obtained from interpolation of the σ 's of dimuon resonances (J/ ψ , ψ (2s), Y's), crosschecked with inclusive and exclusive $B_{d/s} \rightarrow h^+h^-$
- Mean: obtained from exclusive $B_s \to K^+K^-$ and $B^0 \to K^+\pi^-$

 $\sigma(B_s) = (24.6 \pm 0.2 \pm 1.0) \text{ MeV/c}^2$ $\sigma(B_d) = (24.3 \pm 0.2 \pm 1.0) \text{ MeV/c}^2$

Normalization

Three complementary channels are used for the normalization:

$$BR(B^+ \to J/\psi(\mu^+\mu^-)K^+) = (6.01 \pm 0.21) \times 10^{-5}$$

BR(B_s→J/ ψ (µ⁺µ⁻) φ (K⁺K⁻))= (3.4±0.9)×10⁻⁵ BR(B⁰→K⁺π⁻)=(1.94±0.06)×10⁻⁵

$$egin{aligned} lpha_{B^0_s o \mu^+ \mu^-} &= (9.84 \pm 0.91) imes 10^{-10} \,, \ lpha_{B^0 o \mu^+ \mu^-} &= (2.89 \pm 0.15) imes 10^{-10} \,. \end{aligned}$$

Monday, October 17, 11

10

f_s/f_d at LHCb

Our previous result used the HFAG average from LEP/Tevatron.

This ratio is now evaluated at LHCb

• fs/fd is measured at LHCb with hadronic decays B⁰ → D[±]K[∓] or B⁰ → D[±]π[∓] and B_s → D_s[±]π[∓]

 $f_s/f_d = 0.253 \pm 0.017^{\text{stat}} \pm 0.017^{\text{syst}} \pm 0.020^{\text{theo}}$

And semileptonic decays

$$\frac{f_s}{f_u + f_d} = 0.134 \pm 0.004^{+0.011}_{-0.010}$$

• We compute the average:

$$f_s/f_d = 0.267^{+0.021}_{-0.020}$$

LHCb-CONF-2011-034

Phys.Rev.D 83, 014017 (2011)

Observed distribution of events

• Count the events in 4 BDT and 6 $m_{\mu\mu}$ bins

For each bin compute the expected signal and background yields

Evaluate compatibility between observed and expected with:

- S+B hypothesis [CL_{S+B}]
- B only hypothesis [CL_B]

CL_S = CL_{S+B}/CL_B compatibility with the signal hypothesis ^{CP} Used to compute the exclusion

$B_s \rightarrow \mu^+ \mu^-$ search region

	BDT<0.25	0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<>	0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<>	0.75 <bdt< th=""></bdt<>
Exp. combinatorial	2968 ± 69	25 ± 2.5	2.99 ± 0.89	0.66 ± 0.40
Exp. SM signal	1.26 ± 0.13	0.61 ± 0.06	0.67 ± 0.07	0.72 ± 0.07
Observed	2872	26	3	2

Limit on BR($B_s \rightarrow \mu^+ \mu^-$)

Preliminary results from 300pb⁻¹ of data at $\sqrt{s} = 7 \text{ TeV}$ $\frac{BR(B_s \rightarrow \mu^+ \mu^-) < 1.3(1.6) \times 10^{-8} @90\% (95\%) \text{C.L.}}{\text{expected limit, bkg only } < 0.8(1.0) \times 10^{-8}}$

expected limit, bkg+SM $< 1.2(1.5)\times10^{-8}$

Combined 2010+2011 dataset BR< 1.2(1.5)x10-8

Observed limit @ CMS with 1.14fb⁻¹ <1.6(1.9)x10⁻⁸ @ 90%(95%) CL LH LHCb+CMS < 0.9(1.1)x10⁻⁸ @ 90%(95%) CL CE

```
LHCb-CONF-2011-047
```

```
CERN-PH-EP-2011-120, sub. to PRL
```

```
CDF result with 7fb<sup>-1</sup>
0.46 \times 10^{-8} < BR < 3.9 \times 10^{-8} @ 90% CL (BR=1.8<sup>+1.1</sup>-0.9) × 10<sup>-8</sup> hep-ex/1107.2304
```

Monday, October 17, 11

$B_d \rightarrow \mu^+ \mu^-$ search region

Preliminary results from 300pb⁻¹ of data at $\sqrt{s} = 7 \text{ TeV}$ BR(B_d $\rightarrow \mu^+\mu^-$)<4.2(5.2)×10⁻⁹ @90% (95%)C.L. expected limit <2.4(3.1)×10⁻⁹

15

Conclusions

► LHCb presents new preliminary results with 300pb⁻¹ on BR($B_{s/d} \rightarrow \mu^+\mu^-$) improving the previous results by a factor ~4 BR($B_s \rightarrow \mu^+\mu^-$)<1.3(1.6)×10⁻⁸ @90% (95%)C.L. BR($B_d \rightarrow \mu^+\mu^-$)<4.2(5.2)×10⁻⁹ @90% (95%)C.L.

• Combined results with 2010 data (37pb⁻¹): BR(B_s $\rightarrow \mu^+\mu^-$) < 1.2 (1.5) ×10⁻⁸ @ 90 (95)% CL

► + CMS observations: BR(B_s → $\mu^+\mu^-$)<0.9(1.1)×10⁻⁸ @ 90%(95%) CL

The excess seen by CDF has not been confirmed
 With the data collected in 2011 (1fb⁻¹) we might have a 3σ SM evidence

Spares

NUHMI

Best fit contours in tan β vs M_A plane in the NUHMI model

O. Buchmuller et al, Eur. Phys. J. C64 (2009)

Limit on BR($B_d \rightarrow \mu^+ \mu^-$)

Preliminary results from 300pb⁻¹ of data at $\sqrt{s} = 7 \text{ TeV}$ BR(B_d $\rightarrow \mu^+\mu^-$)<4.2(5.2)×10⁻⁹ @90% (95%)C.L. expected limit <2.4(3.1)×10⁻⁹

Prospects

Extrapolation based on the 37pb⁻¹ collected in 2010 and analysed with the 2010-analysis.

LHCb is going to access a very interesting region with the 2012 run