Search for New Physics in $\mathrm{B}_{(\mathrm{s}, \mathrm{d})} \rightarrow \mu^{+} \mu^{-}$decays at LHCb

Flavio Archilli
LNF - INFN
on behalf of the LHCb collaboration

$\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}$probe for $N P$

$\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu \mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

$$
\begin{gathered}
B R\left(B_{q} \rightarrow l^{+} l^{-}\right) \approx \frac{G_{F}^{2} \alpha^{2} M_{B_{q}}^{3} f_{B_{q}}^{2} \tau_{B_{q}}}{64 \pi^{3} \sin ^{4} \theta_{W}}\left|V_{t b} V_{t q}^{*}\right|^{2} \sqrt{1-\frac{4 m_{l}^{2}}{M_{B_{q}}^{2}}} \\
\left\{M_{B_{q}}^{2}\left(1-\frac{4 m_{l}^{2}}{M_{B_{q}}^{2}}\right) c_{S}^{2}+\left[M_{B_{q}} c_{P}+\frac{2 m_{l}}{M_{B_{q}}}\left(c_{A}-c_{A}^{\prime}\right)\right]^{2}\right\}
\end{gathered}
$$

Double suppressed decay: helicity and FCNC
\hookrightarrow very small $B R$ in SM but well predicted:

$$
\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

$$
\operatorname{BR}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.0 \pm 0.1) \times 10^{-10}
$$

\hookrightarrow sensitive to NP effects in scalar/pseudoscalar Higgs sector:

$$
\operatorname{BR}\left(\mathrm{B}_{(\mathrm{d}, \mathrm{~s})} \rightarrow \mu^{+} \mu^{-}\right) \propto \tan ^{6} ß / \mathrm{M}_{A^{4}} \text { MSSM large } \tan ß \text { approximation }
$$

$\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}$at LHCb

LHCb benefit from:

- Large cross section:
- $\sigma(\mathrm{pp} \rightarrow \mathrm{bbX}) @ 7 \mathrm{TeV} \sim 300 \mu \mathrm{~b}$
- Large acceptance for B decays: I. $9<\eta<4.9$
- $\varepsilon_{\text {acc }}\left(B_{s, d} \rightarrow \mu^{+} \mu^{-}\right) \sim 10 \%$
- Very efficient muon trigger
- Good particle ID, tracking and reconstruction

LHCb already published one analysis based on 37pb ${ }^{-1}$ from 2010 data
Physics Letter B 699 (201 I)330-340
Observed $B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<4.3 \times 10^{-8}\left(5.6 \times 10^{-8}\right) @ 90(95) \%$ CL Expected: 5.I (6.5)
Observed $B R\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<1.2 \times 10^{-8}\left(1.5 \times 10^{-8}\right) @ 90(95) \% C L \quad$ Expected: I. 4 (I.8)
we present an update based on $300 \mathrm{pb}^{-1}$ from the first 3 months of 2011 Assuming SM, we expect after selection $\mathbf{3 . 2} \mathbf{B}_{\mathbf{s}}$ and $\mathbf{0 . 3 2} \mathbf{B}_{\mathbf{d}}$ events in $300 \mathrm{pb}^{-1}$

LHCb has already collected Ifb^{-1}

Analysis strategy

- Selection
- muon-based trigger
- Soft selection to reduce size of dataset
- Blind signal region ($\mathrm{M}_{\mathrm{Bd}}-60 \mathrm{MeV}, \mathrm{M}_{\mathrm{Bs}}$ +60 MeV)
- Signal/background discrimination:
- MVA classifier BDT combining kinematic and geometrical properties
- Invariant mass m_{μ}

- Data driven calibration through control channels to get signal and background expectations
- Normalization: convert a number of observed events into a branching fraction by normalizing to channels of known BR
- Results:
- Extract observation / exclusion measurement using the modified frequentist CLs method in bins of mass and BDT

Boosted Decision Tree

Our main background is combinatorial from two real muons

- reduce it by using MVA classifier built using 9 variables related to the geometry and kinematic of the event
- B impact parameter, B lifetime, muon isolation, DOCA, $B \mathrm{Pt}$, minimum impact parameter of the muons
- B isolation
- Polarization variable
- Minimum Pt of the muons
- Choice of variables to avoid correlation with invariant mass
- Optimization and training on MC, using $B_{s} \rightarrow \mu^{+} \mu^{-}$and $\mathrm{bb} \rightarrow \mu \mu \mathrm{X}$

BDT calibration

The BDT response is calibrated on data using:

- for signal we use $B_{(d, s)} \rightarrow h^{+} h^{-}$events
- same topology as $B_{(d, s)} \rightarrow \mu^{+} \mu^{-}$
- selected with hadronic trigger: use of events triggered independently of the signal (TIS)
- for background events in the mass sidebands

Background expectations

- The expected background events in signal regions are extracted from a fit of the mass sidebands divided in BDT bins
- Systematics evaluated using different fit functions and ranges

Other bkg sources

The dominant background is due to real muons from $\mathrm{bb} \rightarrow \mu \mu \mathrm{X}$ events.
The other sources of background are:

- proton-proton photoproduction
- Isolated muons, possible high mass
- But very low Pt efficiently removed by $\mathrm{p} T(B)>500 \mathrm{MeV} / \mathrm{c}$
- Background due to misidentified muons from $\mathrm{B}_{\mathrm{d} / \mathrm{s}} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$ decays
- Evaluated from $\mathrm{B}_{\mathrm{d} / \mathrm{s}} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$reweighted MC
- Cross checked with control channels, requiring one muon
 in the final state
expected:
2.5 ± 0.5 misID events in B_{d} region $\rightarrow 0.6 \pm 0.1$ per BDT bin
0.5 ± 0.4 misID events in B_{s} region $\rightarrow 0.1 \pm 0.1$ per BDT bin

Signal Invariant Mass

The invariant mass is modeled with a Crystal Ball

- Resolution: obtained from interpolation of the σ 's of dimuon resonances $(J / \Psi, \Psi(2 s), Y$'s), crosschecked with inclusive and exclusive $\mathrm{B}_{\mathrm{d} / \mathrm{s}} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$
- Mean: obtained from exclusive $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$and $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$

$$
\begin{aligned}
& \sigma\left(B_{s}\right)=(24.6 \pm 0.2 \pm \mathrm{I} .0) \mathrm{MeV} / \mathrm{c}^{2} \\
& \sigma\left(\mathrm{~B}_{\mathrm{d}}\right)=(24.3 \pm 0.2 \pm \mathrm{I} .0) \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

Norn ailization

$\mathrm{BR}=\mathrm{BR}_{\mathrm{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL} \mid \mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG} \mid \mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL} \mid \mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG} \mid \mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_{q}^{0}}} \times \frac{N_{B_{q}^{0} \rightarrow \mu^{+} \mu^{-}}}{N_{\mathrm{cal}}}=\alpha \times N_{B_{q}^{0} \rightarrow \mu^{+} \mu^{-}}$
Evaluated on MC, measured crosschecked on on data data

Three complementary channels are used for the normalization:
$\mathrm{BR}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi\left(\mu^{+} \mu^{-}\right) \mathrm{K}^{+}\right)=(6.0 \mathrm{I} \pm 0.2 \mathrm{I}) \times 10^{-5}$
$\operatorname{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi\left(\mu^{+} \mu^{-}\right) \varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)\right)=(3.4 \pm 0.9) \times 10^{-5}$
$B R\left(B^{0} \rightarrow K^{+} \Pi^{-}\right)=(1.94 \pm 0.06) \times 10^{-5}$

$$
\begin{aligned}
& \alpha_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}=(9.84 \pm 0.91) \times 10^{-10}, \\
& \alpha_{B^{0} \rightarrow \mu^{+} \mu^{-}}=(2.89 \pm 0.15) \times 10^{-10} .
\end{aligned}
$$

$\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ at LHCb

Our previous result used the HFAG average from LEP/Tevatron.
This ratio is now evaluated at LHCb

- $\mathrm{fs} / \mathrm{fd}$ is measured at LHCb with hadronic decays $\mathrm{B}^{0} \rightarrow \mathrm{D}^{ \pm} \mathrm{K}^{\mp}$ or $\mathrm{B}^{0} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{ \pm} \pi^{\mp}$
$f_{s} / f_{d}=0.253 \pm 0.017^{\text {stat }} \pm 0.017^{\text {syst }} \pm 0.020^{\text {theo }}$
Phys.Rev.D 83, 014017 (201I)

- And semileptonic decays

$$
\frac{f_{s}}{f_{u}+f_{d}}=0.134 \pm 0.004_{-0.010}^{+0.011}
$$

LHCb-CONF-201I-028

- We compute the average:

$$
f_{s} / f_{d}=0.267_{-0.020}^{+0.021}
$$

LHCb-CONF-201I-034

Observed distribution of events

- Count the events in 4 BDT and 6 $m_{\mu \mu}$ bins
- For each bin compute the expected signal and background yields
- Evaluate compatibility between observed and expected with:
- S+B hypothesis [CLs+B]
- B only hypothesis [CLB]

$$
\begin{gathered}
C L_{s}=C L_{s+B} / C L_{B} \text { compatibility with the signal hypothesis } \\
\text { Used to compute the exclusion }
\end{gathered}
$$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$search region

$\mathrm{BDT}<0.25$	$0.25<\mathrm{BDT}<0.5$	$0.5<\mathrm{BDT}<0.75$	$0.75<$ BDT
2968 ± 69	25 ± 2.5	2.99 ± 0.89	0.66 ± 0.40
1.26 ± 0.13	0.61 ± 0.06	0.67 ± 0.07	0.72 ± 0.07
2872	26	3	2

Limit on $\mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

Preliminary results from $300 \mathrm{pb}^{-1}$ of data at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$

$$
\text { BR }\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<1.3(1.6) \times 10^{-8} @ 90 \%(95 \%) C . L .
$$

expected limit, bkg only $<0.8(1.0) \times 10^{-8}$
expected limit, bkg+SM < I.2(I.5)×I0-8
Combined 20IO+20II dataset $\mathrm{BR}<\mathrm{I} .2(\mathrm{I} .5) \times 10^{-8}$
Observed limit @ CMS with I.I4fb-1 < I.6(I.9)×10-8 @ 90\%(95\%) CL
LHCb+CMS < 0.9(I.I)×10-8 @ 90\%(95\%) CL
CDF result with $7 \mathrm{fb}^{-1}$

$$
0.46 \times 10^{-8}<B R<3.9 \times 10^{-8} @ 90 \% C L\left(B R=I .8^{+I . I}-0.9\right) \times 10^{-8} \text { hep-ex/II } 107.2304
$$

$\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$search region

Combinatorial bkg Misid bkg Signal SM
Data

	$\mathrm{BDT}<0.25$	$0.25<\mathrm{BDT}<0.5$	$0.5<\mathrm{BDT}<0.75$	$0.75<$ BDT
Exp.combinatorial	3175 ± 72	26.6 ± 2.5	3.1 ± 0.8	0.7 ± 0.4
Exp. MisID	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.1
Observed	3025	31	5	4

Preliminary results from $300 \mathrm{pb}^{-1}$ of data at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$

$$
\mathrm{BR}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)<4.2(5.2) \times 10^{-9} @ 90 \% \text { (95\%)C.L. }
$$

expected limit $<2.4(3.1) \times 10^{-9}$

Conclusions

- LHCb presents new preliminary results with $300 \mathrm{pb}^{-1}$ on $\mathrm{BR}\left(\mathrm{B}_{\mathrm{s} / \mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)$ improving the previous results by a factor ~ 4

$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)<1.3(1.6) \times 10^{-8} @ 90 \% \text { (95\%)C.L. } \\
& \operatorname{BR}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)<4.2(5.2) \times 10^{-9} @ 90 \% \text { (95\%)C.L. }
\end{aligned}
$$

- Combined results with 2010 data (37pb-1):

$$
\mathrm{BR}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)<1.2(\mathrm{I} .5) \times 10^{-8} @ 90(95) \% \mathrm{CL}
$$

1 + CMS observations:

$$
\text { BR }\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<0.9(1 . I) \times 10^{-8} @ 90 \%(95 \%) C L
$$

- The excess seen by CDF has not been confirmed
- With the data collected in 2011 (Ifb^{-1}) we might have a 3σ SM evidence

Spares

NUHMI

Best fit contours in $\tan \beta$ vs M_{A} plane in the NUHMI model

O. Buchmuller et al, Eur. Phys. J. C64 (2009)

Regions compatible with
$\operatorname{BR}\left(B_{s} \rightarrow \mu \mu\right)=2 \times 10^{-8}, I \times 10^{-8}, 5 \times 10^{-9}$ and SM

LHCb calculation using F. Mahmoudi, SuperIso, arXiv: 08083144

Limit on $B R\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$

Preliminary results from $300 \mathrm{pb}^{-1}$ of data at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ $B R\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<4.2(5.2) \times 10^{-9} @ 90 \%$ (95\%)C.L.
expected limit $<2.4(3.1) \times 10^{-9}$

Prospects

Extrapolation based on the $37 \mathrm{pb}^{-1}$ collected in 2010 and analysed with the 2010 -analysis.

LHCb is going to access a very interesting region with the $\mathbf{2 0 1 2} \mathbf{2}$ run

