SQCD Corrections to $bg \rightarrow bh$

Prerit Jaiswal

YITP, Stony Brook University and Brookhaven National Lab

Oct 20, 2011

Brookhaven Forum 2011

S. Dawson, C. B. Jackson, P. Jaiswal, SUSY QCD Corrections to Higgs-b Production : Is the Δ_b Approximation Accurate?, Phys. Rev. **D83**, 115007 (2011) ≈ 2000

Prerit Jaiswal (YITP and BNL)

SQCD $bg \rightarrow bh$

10/20/2011 1/22

- ullet Motivation for bg
 ightarrow bh studies
- 4FNS vs 5FNS
- Large $\tan\beta$ radiative corrections
- SQCD Corrections and Δ_b Approximation
- How good is the Δ_b Approximation?

Motivation

Standard Model Higgs boson Production

• Main production modes in SM : "gluon fusion", W/Z fusion, W/Z associated production and associated production with t

• What about BSM Higgs such as in MSSM?

Prerit Jaiswal (YITP and BNL)

SQCD $bg \rightarrow bh$

Motivation

MSSM Higgs Sector

- Two Higgs doublets H_u and H_d \Rightarrow
 - 2 CP even (h^0, H^0) , 1 CP odd (A^0)
 - 1 charged Higgs (H⁺)
 - Goldstone bosons (G⁰, G⁺)

• VEVs :
$$\langle H_u
angle = v_u$$
 and $\langle H_d
angle = v_d$, tan $eta = v_u/v_d$

- Two independent parameters : m_A and tan eta (at tree level)
 - examples : $m_{h/H}^2 = \frac{1}{2} \left[m_A^2 + m_Z^2 \mp \sqrt{\left(m_A^2 + m_Z^2 \right) 4 m_A^2 m_Z^2 \cos^2 2\beta} \right]$
 - α diagonalizes the Higgs mass matrix $\cos 2\alpha = -\cos 2\beta \left(\frac{m_A^2 - m_Z^2}{m_H^2 - m_L^2}\right)$
- Decoupling limit : $m_A \gg m_Z$
 - $\beta \alpha \rightarrow \frac{\pi}{2}$
 - Significance of Decoupling limit?

MSSM Higgs Couplings to Fermions

	Couplings w.r.t SM	Decoupling limit	
h ⁰ b	$-\sinlpha/\coseta$	1	
h ⁰ tt	\coslpha/\sineta	1	
H⁰ ̄b b	\coslpha/\coseta	aneta	
$H^0\overline{t}t$	\sinlpha/\sineta	-1/ aneta	
A ⁰ bb	$\gamma_5 an eta$	$\gamma_{\tt 5}{\sf tan}eta$	
A ⁰ tt	$\gamma_{\mathtt{5}} cot eta$	$\gamma_{\mathtt{5}} \cot eta$	

- Decoupling limit : h^0 couplings in MSSM same as that of SM at tree level (also true for couplings with gauge bosons)
 - Production cross-sections same as that in SM
 - Same channels as SM : gluon fusion, vector boson fusion, associated production
- ullet For $m_A\gtrsim m_h$ and large tan eta , same conclusions hold (at tree level).

Prerit Jaiswal (YITP and BNL)

Motivation

• Current status of MSSM parameter space

 Decoupling limit / moderately heavy A and tan β ≥ 7 good parameter space to study.

Prerit Jaiswal (YITP and BNL)

10/20/2011 6 / 22

(日) (周) (日) (日)

Motivation

- Assuming the allowed parameter space (Decoupling limit or moderately heavy A and tan $\beta \gtrsim 7$), it seems the MSSM lightest CP even Higgs production should be identical to SM.
- Then why (and under what conditions) is production of Higgs in association with bottom quarks important?
- For large $\tan \beta$, the bottom Yukawa gets significantly modified.
 - At tree level, it is SM like
 - ullet Radiative corrections can cause Yukawa to rescale by a factor of \sim 3.
- For $m_A \lesssim 200$ GeV and tan $\beta \gtrsim 7$, the dominant Higgs production mode is in association with bottom quark.

(日) (周) (日) (日) (日) (0) (0)

4FNS vs 5FNS

• Higgs production in association with bottom quarks

- $b\bar{b}h$ final state measurements :
 - Exclusive $b\bar{b}h$ production : Both b tagged (high p_T)
 - Semi-inclusive : At least one b tagged
 - Inclusive : No b tagged
- Inclusive modes \rightarrow Larger Cross-section but also large backgrounds.
 - \Rightarrow *b* tagging reduces background
 - \Rightarrow Semi-inclusive mode : a good compromise

4FNS vs 5FNS

4FNS (4-parton Flavour Number Scheme)

- Initial state quarks : Four lightest flavours
- Advantage :
 - Only way to calculate exclusive $b\bar{b}h$ production (both *b* tagged)
- Drawback :
 - In inclusive bbh production, large collinear logs
 - "Fixed order" perturbation theory (No resummation)

10/20/2011 9 / 22

5FNS (5-parton Flavour Number Scheme)

- Addresses the problem of collinear logs
 - Replaces $g
 ightarrow b ar{b}$ splitting with initial state b
 - Λ_b logs resummed and absorbed in b-quark PDF
 - Perturbation now in α_s and Λ_b^{-1}
- *Drawback* : Can not be used for exclusive $b\bar{b}h$ production

 $\Lambda_b = \ln\left(\frac{\mu^2}{m_t^2}\right)$

10/20/2011 10 / 22

4FNS vs 5FNS

Prerit Jaiswal (YITP and BNL)

 $\texttt{SQCD} \ \textit{bg} \ \rightarrow \ \textit{bh}$

10/20/2011 11 / 22

4FNS vs 5FNS

• 4FNS and 5FNS do not match at LO but must match if calculated to all orders.

https://twiki.cern.ch/twiki/pub/LHCPhysics/MSSMNeutral/santandermatching-hks.pdf

Prerit Jaiswal (YITP and BNL)

SQCD $bg \rightarrow bh$

।0/20/2011 12 / 22

Large $\tan \beta$ Radiative Corrections

Effective Lagrangian Approach

$$\mathcal{L}_{ ext{eff}} = -\lambda_b ar{b}_R \left[H_d + rac{\Delta \lambda_b}{\lambda_b} H_u^*
ight] Q_L$$

- Second term not allowed at tree level in MSSM.
- Effective theory : Integrate out heavy degrees of freedom (\tilde{g}, \tilde{b})
- Loop corrections enhanced since
 v_u = v_d tan β

$$=\lambda_b \mathbf{v_d} \left(1+\frac{\Delta \lambda_b}{\lambda_b} \tan\beta\right)$$

10/20/2011 13 / 22

Large $\tan \beta$ Radiative Corrections

Effective Yukawa Coupling

- $m_b \rightarrow \lambda_b v_d \left(1 + \Delta_b\right)$
- At one-loop, $\Delta_b \propto rac{lpha_s}{\pi} \mu aneta / M_{SUSY}$
- For $\mu \sim M_{SUSY}$, large tan β $\Rightarrow \Delta_b \sim \mathcal{O}(1)$
- Perturbation in $\alpha_s \tan \beta$, must resum
- Resummation easy since no loop contribution to αⁿ_s tanⁿ β for n ≥ 2 !!

10/20/2011 14 / 22

• Final result : Bare b quark mass in effective Lagrangian approach

$$m_b = \frac{m_b}{(1+\Delta_b)^2}$$

• effective Yukawa coupling :

$$\begin{split} \lambda_b &= \frac{m_b}{v_d(1+\Delta_b)} \left(1 - \frac{\Delta_b}{\tan \alpha \tan \beta} \right), \text{ where} \\ \Delta_b &= \frac{2\alpha_s}{3\pi} M_{\tilde{g}} \mu \tan \beta \, \mathcal{F}(M_{\tilde{b}_1}, M_{\tilde{b}_2}, M_{\tilde{g}}) \end{split}$$

Prerit Jaiswal (YITP and BNL)

10/20/2011 15 / 22

SQCD Corrections

ullet Complete SQCD one-loop corrections to $bg \to bh$ computed in

[S. Dawson and C. Jackson, Phys. Rev. D77, 015019 (2008)] ,

- [S. Dawson, C. Jackson and PJ, Phys. Rev. D77, 015019 Phys.Rev. D83 (2011) 115007]
- SUSY QCD \Rightarrow Diagrams involving gluinos and sbottoms

Self-Energy diagrams

SQCD Corrections

Box diagrams

..... and counterterms

- For cross-section calculations, consider two cases :
 - Maximal mixing case : $|\tilde{m}_L^2 - \tilde{m}_R^2| \ll m_b |X_b| \Rightarrow \theta_{\tilde{b}} \sim \frac{\pi}{4}$ • Minimal mixing case :

$$|m_L^2 - m_R^2| \gg m_b |X_b| \Rightarrow \theta_{\tilde{b}} \sim 0$$

• Squark mass matrix

$$M_{\tilde{b}}^{2} = \begin{pmatrix} \tilde{m}_{L}^{2} & m_{b}X_{b} \\ m_{b}X_{b} & m_{R}^{2} \end{pmatrix}$$

$$X_{b} = A_{b} - \mu \tan \beta$$
• Mixing angle :

$$\sin 2\theta_{\tilde{b}} = \frac{2m_{b}(A_{b} - \mu \tan \beta)}{M_{b_{1}}^{2} - M_{b_{2}}^{2}}$$

Prerit Jaiswal (YITP and BNL)

10/20/2011 17 / 22

э

SQCD Corrections

• How much of the SQCD corrections accounted by Δ_b approximation?

10/20/2011 18 / 22

SQCD Corrections : Δ_b Approximation

• Δ_b Approximation : Calculate SM cross-section but with rescaled Yukawa coupling

$$\frac{g_{bbh}^{MSSM}}{g_{bbh}^{SM}} = -\frac{\sin\alpha}{\cos\beta} \left(\frac{1}{1+\Delta_b}\right) \left(1 - \frac{\Delta_b}{\tan\beta\tan\alpha}\right)$$

• Includes only resummed large tan β effects.

$$M_{SUSY} = 1$$
 TeV, $M_{\tilde{g}} = 1$ TeV, $A_b = A_t = 2$ TeV, and $\mu = M_2 = 200$ GeV

$\tan\beta = 40$						
$M_{h^0} [\text{GeV}]$	100	110	120	130		
$\alpha \text{ [rad]}$	-1.5063	-1.4716	-1.3798	-0.7150		
$g^{M\!S\!S\!M}_{b\bar{b}h^0}/g^{S\!M}_{b\bar{b}h}$	33.913	33.823	33.387	22.390		
$g_{t\bar{t}h^0}^{\rm MSSM}/g_{t\bar{t}h}^{\rm SM}$	0.0645	0.0991	0.1899	0.7553		

S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, Mod.Phys.Lett. A21 (2006) 89-110

Prerit Jaiswal (YITP and BNL)

SQCD $bg \rightarrow bh$

10/20/2011 19 / 22

= nar

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SQCD Corrections : Δ_b Approximation

• Δ_b Approximation in the context of bg o bh :

Δ_b Approximation : Why it works?

- [S. Dawson, C. Jackson and PJ, Phys. Rev. D77, 015019 Phys.Rev. D83 (2011) 115007]
- Analytically compute the SQCD Corrections for two extreme cases : maximal and minimal mixing
- Maximal mixing : $|\tilde{m_L^2} \tilde{m_R^2}| \ll m_b |X_b| \Rightarrow heta_{\tilde{b}} \sim rac{\pi}{4}$
- Expand the amplitudes in power of $1/M_S$ assuming large tan β so that the terms like $m_b \tan \beta \sim \mathcal{O}(M_{EW})$.

10/20/2011

21 / 22

- First term : IBA
- Other terms are $\mathcal{O}(M_{EW}^2/M_S^2)$

Prerit Jaiswal (YITP and BNL)

- Higgs production in association with *b* quark an important mode for large parameter space in MSSM
- SUSY QCD corrections to $bg \rightarrow bh$ can be big for large tan β .
- Bottom Yukawa coupling scales by a larg factor when large $\tan \beta$ corrections resummed.
- SUSY QCD corrections are dominated by this rescaling : Δ_b approximation works.