

Search for Z' and W' at CMS

George Alverson for the CMS Collaboration

BNL Forum 2011

- Heavy resonances are a powerful probe of new physics at the Terascale
 - Common to many different models
- Heavy resonance decays with leptons offers a sensitive tool for discovery

The CMS Detector

- 3.8 T internal field: Silicon strip and pixel tracking
- Crystal EM calorimetry; brass/scintillator hadronic calorimetry
- Drift tubes + RPC surrounding toroid (barrel); cathode strips + RPC in endcaps
- Forward detectors

Dilepton Resolution: Muons ~6% (500 GeV)-10% (1 TeV) Electrons ~1% (500 GeV) –1% (1 TeV)

Evolution of ∫ Luminosity

- First Z' paper: 40/35 pb⁻¹ (2010 sample) <u>JHEP05(2011)093</u>
- Latest public Z' result: 1.1 fb⁻¹ (July) <u>CMS-PAS-EXO-11-019</u>
- Current dataset size: (see right)
- (Current running period to end of October; resumes in new year)

lpc.web.cern.ch/lpc/lumiplots.htm

Search for Z' and W' at CMS

BNL Forum 2011

Z' Taxonomy

Many different models give rise to a Z-like resonance ($pp \rightarrow \ell^+ \ell^- + X$). Some commonly considered ones are:

- Sequential Standard Model (SSM): not much motivation, but provides a known benchmark. Same couplings as SM Z, but with higher mass. Generalized version = GSM.
- Left-Right Symmetric Model (LR): [GUT motivated: SU(2)_L X SU(2)_R X U(1)_{B-L}]. Generalized version has not just B-L, but also, R, LR, and Y.
- E_6 : [GUT motivated: $E_6 \rightarrow SU(5) \times U(1)_{\psi} \times U(1)_{\chi}$]. At low mass, produces oneparameter class of models: $\cos(\theta) U(1)_{\psi}$ - $\sin(\theta) U(1)_{\chi}$.
- Many, many others...

Other Z'-like signal-producing models:

- Randall-Sundrum Kaluza-Klein graviton (spin-2)
- KK SM boson (spin-1)
- RPV SUSY sneutrino (spin-0)

Lepton Selection

- Selection optimized for high efficiency at high energy
- Use rather restrictive γ(e)/μ trigger:
 - e: double EM cluster
 - μ : single μ with $p_T > 30 \text{ GeV}$
- Offline cuts:
 - e: E_T > 25 GeV (2010)
 > 35-40 GeV (2011)
 - μ: E_T > 20 GeV (2010)
 > 35 GeV (2011)
 opposite signs required

- Corrections:
 - e Energy scale (esp. endcap)
 - Data/MC efficiency scale factor
 - Remove cosmic µ
- Efficiency for ID and trigger measured with tag-and-probe method

Dilepton Efficiencies & Bkgnd

Check understanding by comparing eµ spectrum with MC

Good agreement; extract
 N(ee,μμ)/N(eμ) scaling factor.

Individual checks:

- e mis-ID (e from jets: check with fake rate)
- μ contamination from cosmics

Dilepton Spectra

MC (solid area) normalized to Z' peak (60-120 GeV); Note difference in jet contamination.

Dilepton Spectra (Integral)

Searching for heavy dilepton resonances

- Normalize ee/μμ spectra to Z peak (cancels some systematics)
- Fit MC DY spectrum to parameterized function over range 200 < m_{ee} < 2500 GeV, using

f_B(m | α,κ) ~ Exp(-αm) m^{-κ}

3. Parameterize resolution-smeared resonance (Breit-Wigner convoluted with Gaussian):

```
f_{S}(m | M, \Gamma, \sigma) = BW(M, \Gamma) \otimes G(0, \sigma)
```

 Calculate extended likelihood and set limit using both frequentist and Bayesian approaches

Z´ Limits $[\sigma(Z') \cdot BR(\ell^+ \ell^-)]$

Current Limits

95% CL Exclusions based on a Bayesian calculation (frequentist calculation gives v. similar numbers)

Channel	M _{ee} [GeV]	$M_{\mu\mu}$ [GeV]	$M_{\mu\mu ee}$ [GeV]
Z' _{SSM}	1730	1780	1940
Z'_{ψ}	1440	1440	1620
$G_{\rm KK}$ (k/ $\overline{M}_{\rm PL}$ =0.05)	1300	1240	1450
$G_{\rm KK}$ (k/ $\overline{M}_{\rm PL}$ =0.1)	1590	1640	1780

CMS-PAS-EXO-11-019

 $C_{\rm u}$ - $C_{\rm d}$ space

- Handy way to present the limits: express Z' in terms of couplings to u/d quarks [Carena, et al., <u>10.1103/PhysRevD.70.093009</u>]
- $\sigma_{LO} \approx \pi(w_u(s, M_z^2) c_u + w_d(s, M_z^2) c_d)/48s$ [in narrow width approximation],

 w_u , w_d related to u/d structure f'ns, act as flux factors

- As for Z', W' is present in many SM extensions. Benchmark remains Sequential Standard Model W': probe with W'→ℓv
- Some models (notably Technicolor) suppress W'→WZ →3ℓv mode: probe with W'→WZ →3ℓv
 - Low Scale Technicolor (LST): case with a_T and ρ_T ~ degenerate, of recent interest

CMS-PAS-EXO-11-024

 $\boldsymbol{\mu}$ selection:

- Least restrictive single μ trigger w/o isolation criteria.
- Offline, globally reconstructed w/ isolation & quality requirements

e selection:

• Early/late mix of (27-35 GeV e) : (25 GeV e & E_{cal} > 40 GeV)

For both, offline requirement of near back-to-back ℓ-E^{miss}

 E_T^{miss} :

• Based on Particle Flow technique

Background: parameterized based on 180 GeV < M_T < 600 GeV

$W' \rightarrow \ell v$ Limits

CMS-PAS-EXO-11-024

W′→WZ →3ℓv

CMS-PAS-EXO-11-041

$W' \rightarrow WZ \rightarrow 3\ell v$ Limits

CMS-PAS-EXO-11-041

BNL Forum 2011

References

- Z': 1.1 fb-1 sample: <u>CMS-PAS-EXO-11-019</u> 40/35 pb-1 sample: doi:<u>10.1007/JHEP05(2011)093</u> (EXO-10-013)
- W': <u>CMS-PAS-EXO-11-024</u>
 -> 3I, <u>CMS-PAS-EXO-11-041</u>
- Not included: <u>CMS-PAS-EXO-10-022</u> (Ζ' to ττ)