The Status of the Search for Super-Symmetry

# Scott Thomas Rutgers University



# Why Super-Symmetry ?



Theorists

Experimentalist

Experimentalists Deal in Signatures ...

Super-Symmetry is a Great Signature Generator

# Search for Super-Symmetry at the Weak Scale



### The Direct Search for Super-Partners has been Underway for O(30) years

| SPS, LEPI                                      | m > O(50) GeV                                        |  |  |
|------------------------------------------------|------------------------------------------------------|--|--|
| LEPII                                          | m > O(100) GeV                                       |  |  |
| Tevatron                                       | m > O(300) GeV                                       |  |  |
| LHC                                            | m > O(1000) GeV<br>Mass Scale for Some of the Super- |  |  |
|                                                | Partners - In <u>Some</u> Channels                   |  |  |
| The Searches have Been Heroic - but Incomplete |                                                      |  |  |







#### SUSY: No Single Definitive Prediction – Just Hope that Some of the Super-Partners

are Kinematically Accessible

#### Make (Prioritized) List of Signatures and Do the Experimental Searches



# Direct Searches for Super-Symmetry

#### Super-Partners + Super-Interactions

| Spectrum                    | (Enormous Parameter Space)     |
|-----------------------------|--------------------------------|
| + Goldstino                 |                                |
| + New Interactions          | (R-Symmetry, B or L Conserved) |
| + Global Symmetry Violation | (Lepton Flavor, )              |
| + New Global Symmetries     | ( U(1) <sub>R</sub> ,)         |
| + New Matter fields         | (Vector Like, Dark Matter,)    |
| + New Higgs fields          | (Singlets,)                    |
| + New Gauge Interactions    | (Abelian, Non-Abelian)         |
| +                           |                                |

# Current Experimental Era: (Pre-Discovery)

Signatures Most Important Metric

Organize with Production and Decay Topologies



Parameterized by

Mass Spectrum, Spins + Quantum Numbers (or Decay Distributions)

# Topologies Factorize Mapping Data $\leftarrow \rightarrow$ Theory



- Production  $\sigma$ 's Factor Out of Problem
- Cascade Br's Factor Out of Problem
- Multiple Topologies + Multiple Channels Easily Combined
- No Relation Among  $\sigma_t$ ,  $Br_{\alpha t}$ ,  $m_{it}$  Need be Specified
- Can Add More Topologies Later (Since Don't Simulate Combinations of Topologies)

Simplified Models for LHC New Physics Searches arXiv:1105.2838 [hep-ph] Signatures of New Physics at the LHC http://www.lhcnewphysics.org

#### **Results for SUSY Topologies**

Ranges of exclusion limits for gluinos and squarks, varying m( $\tilde{\chi}^{0}$ ) CMS preliminary



# Focus on Signatures Parameterized by Production and Decay Topologies This Talk ... 2011 ... LHC

# Focus on Signatures Parameterized by Production and Decay Topologies

# This Talk ... 2011 ... LHC



(Post-Discovery)

Cosmological or Loy Energy Constraints (Many Assumptions)





Generic Non-Degenerate Spectrum - High p<sub>T</sub> Isolated Objects:

Jets, b-Jets, Electrons, Muons, Taus, Z-Bosons, Photons, MET, Top Quarks + Lightest Super-Partner(s)

#### SUSY Topologies



Searches are Built Around SM Backgrounds -

Design Searches Away from "Origin" of Signature Space Along Some Axis or Axes

# Canonical SUSY Topology - Stable Neutralino LSP



MET + X searches:

| Organize by N <sub>leptons</sub> : X = Jets + 0 Leptons | Compression -     |
|---------------------------------------------------------|-------------------|
| Jets + 1 Lepton                                         | Degeneracies      |
| Jets + 2 OS Leptons                                     | Can Soften        |
| Jets + 2 SS Leptons                                     | Emitted Particles |
| 3 Leptons                                               | Weaken Signature  |
| 4 or More Leptons                                       | 16                |

## LHC Signatures

**Irreducible Pair Production** 



Beyond Tevatron Reach in Relatively Low Background Final StatesStrong Production > O(pb-1)(All That's Been Probed<br/>Until Recently )Weak Production > O(fb-1)(Starting to Probe Now)

#### Jets + MET Signature



$$m_{eff} = \sum_{i=1}^{n} |\vec{p}_T^{jet \ i}| + E_T^{miss}$$

18

#### Jets + MET Signature



#### Same Sign Leptons + Jets + MET Signature



20

# Three or More Leptons (+ MET) Signatures

#### Compare Tevatron Tri-Lepton Searches (Narrowly Focussed on Specific Signature)

#### Data: CMS 2.1 fb<sup>-1</sup>

| Selection                              | $N(\tau)=0$ |                     |       | $N(\tau)=1$     |      | $N(\tau)=2$     |  |
|----------------------------------------|-------------|---------------------|-------|-----------------|------|-----------------|--|
|                                        | obs         | expected SM         | obs   | expected SM     | obs  | expected SM     |  |
| ≥FOUR Lepton Results                   |             | _                   |       |                 |      |                 |  |
| MET>50, $H_T$ >200,noZ                 | 0           | $0.003\pm0.002$     | 0     | $0.01\pm0.05$   | 0    | $0.30 \pm 0.22$ |  |
| MET>50, $H_T$ >200, Z                  | 0           | $0.06\pm0.04$       | 0     | $0.13\pm0.10$   | 0    | $0.15\pm0.23$   |  |
| MET>50, $H_T$ <200,noZ                 | 1           | $0.014\pm0.005$     | 0     | $0.22\pm0.10$   | 0    | $0.59\pm0.25$   |  |
| MET>50, $H_T$ <200, Z                  | 0           | $0.43\pm0.15$       | 2     | $0.91\pm0.28$   | 0    | $0.34\pm0.15$   |  |
| MET<50, $H_T$ >200,noZ                 | 0           | $0.0013 \pm 0.0008$ | 0     | $0.01\pm0.05$   | 0    | $0.18\pm0.07$   |  |
| MET<50, $H_T$ >200, Z                  | 1           | $0.28\pm0.11$       | 0     | $0.13\pm0.10$   | 0    | $0.52\pm0.19$   |  |
| MET<50, $H_T$ <200,noZ                 | 0           | $0.08\pm0.03$       | 4     | $0.73\pm0.20$   | 6    | $6.9 \pm 3.8$   |  |
| MET<50, $H_T$ <200, Z                  | 11          | $9.5\pm3.8$         | 14    | $5.7\pm1.4$     | 39   | $21 \pm 11$     |  |
| THREE Lepton Results                   |             |                     |       |                 |      |                 |  |
| MET>50, $H_T$ >200,no-OSSF             | 2           | $0.87\pm0.33$       | 21    | $14.3\pm4.8$    | 12   | $10.4 \pm 2.2$  |  |
| MET>50, $H_T$ <200,no-OSSF             | 4           | $3.7\pm1.2$         | 88    | $68\pm17$       | 76   | $100 \pm 17$    |  |
| MET<50, $H_T$ >200,no-OSSF             | 1           | $0.50\pm0.33$       | 12    | $7.7\pm2.3$     | 22   | $24.7\pm4.0$    |  |
| MET<50, $H_T$ <200,no-OSSF             | 7           | $5.0 \pm 1.7$       | 245   | $208 \pm 39$    | 976  | $1157\pm323$    |  |
| MET>50, $H_T$ >200,noZ                 | 5           | $1.9\pm0.5$         | 7     | $10.8\pm3.3$    | -    | -               |  |
| MET>50, $H_T$ >200, Z                  | 8           | $8.1\pm2.7$         | 10    | $11.2\pm2.5$    | -    | -               |  |
| MET>50, $H_T$ <200,noZ                 | 19          | $11.6 \pm 3.2$      | 64    | $52\pm13$       | -    | -               |  |
| MET<50, $H_T$ >200,noZ                 | 5           | $2.0\pm0.7$         | 24    | $26.6\pm3.3$    | -    | -               |  |
| MET>50, $H_T$ <200, Z                  | 58          | $57\pm21$           | 47    | $44.1\pm7.0$    | _    | -               |  |
| MET<50, $H_T$ >200, Z                  | 6           | $8.2\pm2.0$         | 90    | $119\pm14$      | -    | -               |  |
| MET<50, <i>H</i> <sub>T</sub> <200,noZ | 86          | $82\pm21$           | 2566  | $1965\pm438$    | _    | _               |  |
| MET<50, $H_T$ <200, Z                  | 335         | $359\pm89$          | 9720  | $7740 \pm 1698$ | _    | -               |  |
| Totals 4L                              | 13.0        | $10.4\pm3.8$        | 20.0  | $7.8 \pm 1.5$   | 45   | $30 \pm 12$     |  |
| Totals 3L                              | 536         | $539\pm94$          | 12894 | $10267\pm1754$  | 1086 | $1291\pm324$    |  |

#### **Combine Exclusive Channels**

#### Three or More Leptons (+ MET) Signatures

Leptonic RPV





## **3<sup>rd</sup> Generation Enrichment**

Standard Model Particles Emitted in Cascade Decays may be 3<sup>rd</sup> Generation Enriched by Left-Right Super-Partner Mixing and/or Spectrum

| Taus : | Identification More Difficult than    |    |  |
|--------|---------------------------------------|----|--|
|        | Electron or Muon - Reduces Sensitivit | ty |  |

- Bottoms: b-tagged Jets Generally Reduces Backgrounds Increased Sensitivity
- Tops: Reconstruction can be Challenging ... or in Simple Signatures an Opportunity

## Mono-Lepton + b-jet + MET Signature



The Variables MET, HT, ST, m<sub>eff</sub>, ...



Kinematic Correlations are Required for More Refined Measurements Closer to the Origin of Signature Space (Less Inclusive) Signal Might be Buried There Under SM Background Low ST, MET, ..., Top or Tau Enriched











## Mono-Lepton + Jets + MET Signature



#### Mono-Lepton + Jets + MET Signature





Multi-Jet Signature

**Boosted Tri-Jet Resonance** 

Focus on Resolved Individual Jets

Rather Than Giant Merged Jets



2000 2000 1800 QCD Fills Up Phase Space Combinatoric Confusion 1600F Approximately m<sub>jet-jet-jet</sub> 1400 Scale Invariant 1200 1000 800 600 Gluino Boosted 400 <del>|</del> Tri-Jet Resonance 200 F 0<sup>E</sup> . . . . . . . . . . 1000 1200 1400 1600 1800 2000 200 400 600 800 GeV

p<sub>T,jet-jet-jet</sub>

Multi-Jet Signature

**Boosted Tri-Jet Resonance** 

Focus on Resolved Individual Jets

Rather Than Giant Merged Jets





Multi-Jet Signature

**Boosted Tri-Jet Resonance** 

Focus on Resolved Individual Jets

Rather Than Giant Merged Jets





All Blunt "Thermal" Searches Can be Improved With Refined Kinematics ...

But Become Less Inclusive ...

Excavation Toward the Origin of Signature Space has Begun ...

## The Scale of Super-Symmetry Breaking

Possible Decay to Goldstino (component of gravitino) Provides a Natural Classification of Inclusive Signatures



## SUSY Inclusive Signatures

**TABLE 24.** Experimental signatures for different NLSP scenarios. LNIP  $\equiv$  Large Negative Impact Parameter. MIT  $\equiv$  Minimum Ionizing Track (muon candidate). HIT  $\equiv$  Highly Ionizing Track (anomalously large dE/dx). CC-HIT  $\equiv$  Charge Changing Highly Ionizing Track. CE-HIT  $\equiv$  Charge Exchange Highly Ionizing Track. H-HIT  $\equiv$  Hadronic Highly Ionizing Track. TOF  $\equiv$  large Time of Flight measurement.  $X \equiv$  Additional partons in the final state. If the decay length is comparable to the size of the detector, then signatures from two or three columns can appear simultaneously.

| NLSP                             | Prompt Decay                                                                                                | Macroscopic<br>Decay Length                                                                                                                     | Long-lived                                                                                                                   |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Bino- $\widetilde{\chi}^0_1$     | $\gamma\gamma \ X \ E_T$                                                                                    | (Displaced $\gamma$ ) $X \not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                             | X ₿ <sub>T</sub>                                                                                                             |  |
| Higgsino- $\widetilde{\chi}^0_1$ | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                          | (Displaced $\gamma$ ,<br>Displaced $Z$ ,<br>LNIP <i>b</i> -jets ) $X \not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $X \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                             |  |
| $\widetilde{	au}_1$              | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                          | $\begin{array}{l} \mathrm{HIT}  ightarrow 	au \ \mathrm{kinks} \ \mathrm{HIT}  ightarrow e, \mu \ \mathrm{kinks} \end{array}$                   | HITs<br>Same-Charge HIT<br>Same-Charge MI<br>$\ell\ell\ell X E_T$<br>$\ell\ell\ell X E_T$<br>CC-HITs<br>TOF                  |  |
| $\widetilde{\ell}$ co-NLSP       | (as for Stau NLSP, but<br>with different profiles,<br>lepton democracy)<br>$\ell\ell\ell\ell\ell \ X \ E_T$ | $\mathrm{HIT}  ightarrow e, \mu, 	au ~~\mathrm{kinks}$                                                                                          | HITS<br>$\ell\ell\ell X E_T$<br>$\ell\ell\ell\ell X E_T$<br>TOF                                                              |  |
| $\widetilde{Q}$                  | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                          | Displaced jets<br>H-HIT $\rightarrow$ jet kinks<br>LNIPs<br>Mesino Oscillations                                                                 | $\begin{array}{c} \text{CE-HITs} \\ \text{H-HITs} \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |  |
| $\widetilde{g}$                  | $jj \ X \ \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                             | Displaced jets<br>LNIPs                                                                                                                         | $\begin{array}{l} \text{CE-HITs} \\ \text{H-HITs} \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |  |

Run II Workshop: hep-ph/0008070

## SUSY Inclusive Signatures

**TABLE 24.** Experimental signatures for different NLSP scenarios. LNIP  $\equiv$  Large Negative Impact Parameter. MIT  $\equiv$  Minimum Ionizing Track (muon candidate). HIT  $\equiv$  Highly Ionizing Track (anomalously large dE/dx). CC-HIT  $\equiv$  Charge Changing Highly Ionizing Track. CE-HIT  $\equiv$  Charge Exchange Highly Ionizing Track. H-HIT  $\equiv$  Hadronic Highly Ionizing Track. TOF  $\equiv$  large Time of Flight measurement.  $X \equiv$  Additional partons in the final state. If the decay length is comparable to the size of the detector, then signatures from two or three columns can appear simultaneously.

|                                    | NLSP                                                                                                                                                                                                                                                                                                | Prompt Decay                                                                                                                                                                 | Macroscopic<br>Decay Length                                                                                                     | Long-lived                                                                                                                              |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Bino- $\widetilde{\chi}_1^0$                                                                                                                                                                                                                                                                        | $\gamma\gamma \ X \ E_T$                                                                                                                                                     | (Displaced $\gamma$ ) $X \not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                             | X #T                                                                                                                                    |
|                                    | Higgsino- $\widetilde{\chi}^0_1$                                                                                                                                                                                                                                                                    | $\begin{array}{l} (\gamma,h,Z)(\gamma,h,Z) \ X \ \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                       | (Displaced $\gamma$ ,<br>Displaced Z,<br>LNIP b-jets) X $\not{\!\!\! E}_T$<br>TOF                                               | x ₽ <sub>T</sub> Searches                                                                                                               |
|                                    | $\widetilde{	au}_1 \qquad egin{array}{cccc} 	au^\pm 	au^\pm X & \mu \ \ell^\pm \ell^\pm & X & \mu \ \ell^\pm \ell^\pm & X & \mu_T \ 	au 	au 	au 	au & \chi & \mu_T \ 	au 	au 	au 	au 	au & \chi & \mu_T \ 	au 	au 	au 	au 	au 	au 	au 	au & \chi & \mu_T \ 	au 	au 	au 	au 	au 	au 	au 	au 	au 	au$ |                                                                                                                                                                              | $\begin{array}{l} \mathrm{HIT} \rightarrow \tau  \mathrm{kinks} \\ \mathrm{HIT} \rightarrow e, \mu  \mathrm{kinks} \end{array}$ | HITS<br>Same-Charge HITS<br>Same-Charge MITS<br>$\ell\ell\ell X \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|                                    | $\widetilde{\ell}$ co-NLSP                                                                                                                                                                                                                                                                          | (as for Stau NLSP, but<br>with different profiles,<br>lepton democracy)<br>$\ell\ell\ell\ell\ell \ X \ \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ${\rm HIT} \rightarrow e, \mu, \tau \   {\rm kinks}$                                                                            | $\begin{array}{l} \text{HITs} \\ \ell\ell\ell X \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                   |
|                                    | $\widetilde{Q}$                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} jj \ X \\ cc \ X \ \not{\!\! E}_T \\ bb \ X \ \not{\!\! E}_T \\ tt \ X \ \not{\!\! E}_T \\ Same-Charge \ tt \ X \ \not{\!\! E}_T \end{array} $            | Displaced jets<br>H-HIT $\rightarrow$ jet kinks<br>LNIPs<br>Mesino Oscillations                                                 | CE-HITS<br>H-HITS<br>$\not{\!\! E}_T$<br>TOF                                                                                            |
| Run II Workshop:<br>hep-ph/0008070 | <i>g</i>                                                                                                                                                                                                                                                                                            | <i>jj X ₿</i> <sub>T</sub>                                                                                                                                                   | Displaced jets<br>LNIPs                                                                                                         | CE-HITs<br>H-HITs<br>$E_T$<br>TOF                                                                                                       |

#### Di-Photon + Jets + MET Signature

Prompt Decay



## Di-Photon + Jets + MET Signature

Prompt Decay



#### Three and Four Leptons (+ MET) Signature



#### Three and Four Leptons (+ MET) Signature

Slepton co-NLSP

**Prompt Decay** 



#### Z Bosons + Jets + MET Signature



43

# Higgs Bosons + Jets + MET Signature

**Prompt Decay** 



## Heavy Charged Slepton, Mesino, R-Hadron Signature





#### Heavy Charged Slepton, Mesino, R-Hadron Signature





#### Heavy Charged Slepton, Mesino, R-Hadron Signature

Meta-Stable - Transit Detector High pT, High DE/Dx, Low Velocity



#### Stoped Slepton, Mesino, R-Hadron Signature

#### Meta-Stable - Some Stop in Detector and Decay Later Out of Time



Probe Squarks O(350) GeV

#### Displaced Vertices, Non-Pointing Track Signatures

#### Meta-Stable - Decay While Transiting Detector Displaced Vertex

CMS Preliminary vs=7 TeV L=1.1 fb<sup>-1</sup>

Cross Section × BR [pb] (95% CL)  $m_{\rm H} = 400 \; {\rm GeV/c^2}$ e<sup>+</sup>e<sup>-</sup> - m<sub>x</sub> = 150 GeV/c<sup>2</sup> 10<sup>2</sup> Jets  $m_{\chi} = 50 \text{ GeV/c}^2$  $m_{\chi} = 20 \text{ GeV/c}^2$ Slepton, Bino, 10 **Expected limit (\pm 1\sigma)** Higgsino, Gluino, or Squark,  $H \rightarrow XX \rightarrow (ee)(ee)$ Goldstino 10-1 10<sup>-2</sup> Atlas - Displaced 10<sup>2</sup> 10<sup>-1</sup> 10<sup>3</sup> 10 1 **RPV** Decay cτ [cm]

# Displaced Vertices, Non-Pointing Track Signatures

Meta-Stable - Decay While Transiting Detector

- Non-Pointing Photons
- Non-Pointing Leptons, Tracks, or Jets
- Displaced Z-Bosons
- Displaced Vertices
- Displaced Higgs Boson Large Negative Impact Parameter (LNIP)

Jets Slepton, Bino, Higgsino, Gluino, or Squark, Goldstino

#### SUSY Topology and Signature Space is Enormous

**R-Sym Violation - Resonant Production** 



There are Certainly Many Un-Studied Signatures ...

SUSY in the LHC Era

Signature Space is Enormous !!

So far Probed (beyond Tevatron) <u>Strong Production</u> in <u>Relatively Low Background</u> Final States (Search first for what can be discovered first)

Starting to Probe (beyond Tevatron) <u>Weak Production</u> in <u>Relatively Relatively Low Background</u> Final States

"Thermal" Searches with Blunt Variables Well Underway

More Refined Searches Have Begun

Many Opportunities to Dig Towards Origin of Signature Space

Many Signatures Not Yet Receiving (Enough) Attention Displaced Vertices, Displaced Z-Bosons, Displaced Higgs – LNIPs, ... The Blunt Thermal Searches Have Mowed Down a Lot of Territory Far from the Origin in Signature Space

A lot of Uncut Territory Remains for the Refined Searches

# The Status of Super-Symmetry 2011

No Discovery to Report Quite Yet

But Stayed Tuned ...

Extra Slides:

The Large Hadron Collider will Either

- 1. Discovery Super-Symmetry
- 2. Rule it Out (Psychologically)

We are Now

Part Way to One of These Outcomes ...