S. Stone

Heavy

Flavor

Highlights

BF11, Oct. 20, 2011

What is Heavy Flavor Physics ?

- Define Heavy Flavor Physics
- Flavor Physics: Study of interactions that differ among flavors
- Heavy: Not SM neutrino's or u or d quarks, maybe s quarks, concentrate here on c\& b quarks, t too heavy

Physics Beyond the Standard Model

- Baryogenesis: From current measurements can only generate $\left(n_{B}-\bar{n}_{B}\right) / n_{\gamma}=\sim 10^{-20}$ but $\sim 6 \times 10^{-10}$ is needed. Thus New Physics must exist to generate needed CP Violation
- Dark Matter

Gravitational lensing

- Hierarchy Problem: We don't understand how we get from the Planck scale of Energy $\sim 10^{19} \mathrm{GeV}$ to the Electroweak Scale $\sim 100 \mathrm{GeV}$ without "fine tuning" quantum corrections

BF11, Oct. 20, 2011

Seeking New Physics

- HFP as a tool for NP discovery
- While measurements of fundamental constants are fun, the main purpose of HFP is to find and/or define the properties of physics beyond the SM
- HFP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is extracting the Higgs mass
- M_{w} changes due to $\mathrm{m}_{\mathrm{t}} \frac{d M_{\mathrm{W}}}{d m_{t}} \alpha \frac{m_{t}}{M_{w}}$
- M_{w} changes due to $\mathrm{m}_{\mathrm{H}} \frac{d M_{W}}{d m_{H}} \alpha-\frac{d m_{H}}{M_{H}}$

Flavor as a High Mass Probe

- Already excluded ranges
- $\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\frac{c_{i}}{\Lambda_{i}} O_{i}$, take $c_{i}=1$

Ways out

1. New particles have large masses >>1 TeV
2. New particles have degenerate masses
3. Mixing angles in new sector are small, same as in SM (MFV)
4. The above already implies strong constrains on NP

BF11, Oct. 20, 2011

Ex. of Strong Constraints on NP

- Inclusive $\mathrm{b} \rightarrow \mathrm{s} \gamma,(\mathrm{E} \gamma>1.6 \mathrm{GeV})$
- Measured (3.55 ± 0.26) $\times 10^{-4}$ (HFAG)

- Theory (3.15 ± 0.23) $\times 10^{-4}$ (NNLL) Misiak arXiv:1010.4896
- Ratio $=1.13 \pm 0.11$, Limits most NP models
- Example 2HDM
- $\mathrm{m}\left(\mathrm{H}^{+}\right)<316 \mathrm{GeV}$

BF11, Oct. 20, 2011

Limits on New Physics

- It is oft said that we have not seen New Physics, yet what we observe is the sum of Standard Model + New Physics. How to set limits on NP?
- One hypothesis: assume that tree level diagrams are dominated by SM and loop diagrams could contain NP

Tree diagram example BF11, Oct. 20, 2011

Loop diagram example

Quark Mixing \& CKM Matrix

- In SM charge - $1 / 3$ quarks (d, s, b) are mixed
- Described by CKM matrix (also v are mixed)

$$
\begin{aligned}
V_{\left(\frac{2}{3},-\frac{1}{3}\right)} & =\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{s s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
\end{aligned}
$$

- $\lambda=0.225, \mathrm{~A}=0.8$, constraints on $\rho \& \eta$
- These are fundamental constants in SM

What are limits on NP from quark decays?

- Tree diagrams are unlikely to be affected by physics beyond the Standard Model

CP Violation in B° \& Ko Only

- Absorptive (Imaginary) part of mixing diagram should be sensitive to New Physics. Lets compare

They are Consistent

- But consistency is only at the 5\% level
- Limits on NP are not so strong

Limits on New Physics From Bo Mixing

- Is there NP in $\mathrm{B}^{\circ}-\overline{\mathrm{B}}^{\circ}$ mixing?
- $\left\langle\mathrm{B}^{0} \mid \mathrm{H}_{\Delta B=2}^{\mathrm{SM}+\mathrm{NP}} \overline{\mathrm{B}}^{\mathrm{o}}\right\rangle=\Delta_{\mathrm{d}}^{\mathrm{NP}}\left\langle\mathrm{B}^{0}\right| \mathrm{H}_{\Delta B=2}^{\mathrm{SM}}\left|\overline{\mathrm{B}}^{\mathrm{o}}\right\rangle$
$\Delta_{\mathrm{d}}^{N P}=\operatorname{Re} \Delta_{\mathrm{d}}+i \operatorname{Im} \Delta_{\mathrm{d}}$
- Assume NP in tree decays is negligible, so no NP in $\left|V_{i j}\right|, \gamma$ from $\mathrm{B}^{-} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{-}$
- Allow NP in $\Delta \mathrm{m}$, weak phases, $\mathrm{A}_{\text {SL }}, \& \Delta \Gamma$

Room for new physics, in fact SM is only at 5% c.l.

One Clear Problem

- $\mathrm{B}^{-} \rightarrow \tau^{-} v$, tree process:

Can be new particles instead of W - but why not also in $\mathrm{D}_{(\mathrm{s})}^{+} \rightarrow \ell^{+} v$?

- sin2 2 , CPV in e.g. $\mathrm{B}^{\circ} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$: Box diagram
- Source of most of the CKM discrepancy
- See: E. Lunghi \& A. Soni, "Demise of CKM \& its aftermath," [arXiv:1104.2117], they advocate a 4th generation

ub
- An irritating problem: Lingering difference between inclusive $\mathrm{b} \rightarrow \mathrm{u} \mathrm{v}$, \& exclusive $\mathrm{B} \rightarrow \pi \ell v$,
- Values $\left|\mathrm{V}_{\mathrm{ub}}\right| \times 10^{-3}$

- Inclusive:
$4.25 \pm 0.15 \pm 0.20$
- Exclusive:
$3.25 \pm 0.12 \pm 0.28$
$\frac{\text { New }}{\text { BF11, Oct. 20, } 2011}$

Consequences

ub
Exclusive

Use of Exclusive would increase $\tau v \sin 2 \beta$ discrepancy, use of Inclusive would not solve the problem

A $V_{\text {fix }}$ fix?

- Add new physics: right handed currents with coupling $V_{u b}^{R}$
$\mathrm{B} \rightarrow \pi \ell \nu$ rate goes as
- $\mathrm{B} \rightarrow \tau \nu$ rate goes as $\left|\begin{array}{l}V_{u b}^{L}+\left.V_{b b}^{R}\right|^{2} \\ V_{u b}^{L}-V_{u b}^{R}\end{array}\right|^{2}$
- $\mathrm{B} \rightarrow \mathrm{X}_{u} \ell v$ rate goes as $\left|V_{u b}^{L}\right|^{2}+\left|V_{u b}^{R}\right|^{2}$
- Agreement with $\sim 15 \%$ rhc
- Can arise in SUSY
- Not in loops
- See Crivellin [arXiv:0907.2461], also Buras et.al, [arXiv: 1007.1993]

Recent Results

- NP must affect every process; the amount tells us what the NP is ("DNA footprint")
- New data from CDF, D0, BaBar BES, BELLE, ATLAS, CMS \& LHCb - Not nearly enough time to cover

$\mathbf{B}^{\mathbf{o}} \rightarrow \mathbf{K}^{*}{ }^{\mathbf{o}} \mu^{+} \mu^{-}$

- Similar to $\mathrm{K}^{*} \gamma$, but more decay paths

- Several variables can be examined, e.g. muon forward-backward asymmetry, $A_{\text {FB }}$ is well predicted
- Situation as of July 26

BF11, Oct. 20, 2011

New $\mathrm{B}^{0} \rightarrow \mathbf{K}^{*}{ }^{0} \mu^{+} \mu^{-}$

- New results from CDF $6.8 \mathrm{fb}^{-1} \&$ LHCb $0.3 \mathrm{fb}^{-1}$

No evidence of deviation from SM so far

b Fractions (LHCb)

- Important to set normalization scale for $\mathrm{B}_{\text {s }}$
- $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ using hadronic decays \quad Using Semileptonics: $b \rightarrow\left(D^{0}, D^{+}, D_{s}, \Lambda_{b}\right) \times \mu v$

$f_{s} / f_{d}=0.253 \pm 0.017 \pm 0.017 \pm 0.020$
Theory error

$f_{s} / f_{d}=0.268 \pm 0.008_{-0.020}^{+0.022}$
- independent of η \& p_{t}

$$
f_{s} / f_{d}=0.267_{-0.020}^{+0.021}
$$

- SM branching ratio is $(3.2 \pm 0.2) \times 10^{-9}$ [Buras arXiv: 1012.1447], NP can make large contributions.

Standard Model

MSSM

- Many NP models possible, not just Super-Sym

Discrimination

- Select same topology as $\mathrm{B} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$, add μ ID
- Lots of other variables to discriminate against bkgrd : B impact parameter, B lifetime, $B p_{t}, B$ isolation, muon isolation, minimum impact parameter of muons, muon polarization...
- Can use $\mathrm{B} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$to tune cuts or form a multivariate analysis, used by CDF \& LHCb

CDF Result

Set a "two sided limit @ 90\% CL" $4.6 \times 10^{-9}<\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)<3.9 \times 10^{-8}$
This means to me that there isn't a statistically significant result

LHCb

- LHCb does not observe any excess
- In the two BDT signal bins expect 5.1 events if B is at SM level, see 5
- Expected limit @95\% (90\%)
- Observed limit @95\% (90\%)
$1.5(1.2) \times 10^{-8}$
- p-value of bkgrnd only hypothesis $1.6(1.3) \times 10^{-8}$
- Observed limit with 2010 data 14\%

cms

- Cut based analysis

	Barrel	Endcap
\# expected bkgrd	0.60 ± 0.35	0.80 ± 0.40
\# bkgrd B $\rightarrow \mathrm{h}^{+} \mathrm{h}^{-}$	0.07 ± 0.02	0.04 ± 0.01
\# expected signal	0.80 ± 0.16	0.36 ± 0.07
Sum expected	1.47 ± 0.39	1.20 ± 0.41
Observed	2	1

- Upper limits:
- 1.9×10-8 @95\% CL
- $1.6 \times 10^{-8} @ 90 \%$ CL

26

LHC Combined

- Observed limits
- $1.1 \times 10^{-8} @ 95 \%$ CL
- $0.9 \times 10^{-8} @ 90 \%$ CL,
- This is $3.4(2.8)$ times SM value
- LHC consistent with CDF with a probability of 0.3\%
- Set serious limits in NUHM1 SUSY model
- Still lots of room for NP BF11, Oct. 20, 2011

Neutral Meson Mixing

- Neutral mesons can transform into their anti-particles via $2^{\text {nd }}$ order weak interactions

New particles possible in loop

+ "long distance" for D°

- mass of intermediate q_{0} the heavier the better, favors s \& b since t is allowed, while for c, b is the heaviest
- CKM elements V_{ij}

Some Definitions

- Weak interaction eigenstates are different that strong interaction eigenstates
- $\left|\mathrm{M}_{\mathrm{L}}\right\rangle=\mathrm{p}\left|\mathrm{M}^{0}\right\rangle+\mathrm{q}\left|\overline{\mathrm{M}}^{\mathrm{o}}\right\rangle,\left|\mathrm{M}_{\mathrm{H}}\right\rangle=\mathrm{p}\left|\mathrm{M}^{0}\right\rangle-\mathrm{q}\left|\overline{\mathrm{M}}^{0}\right\rangle$,
- Since we observe the mesons via their weak decays, $\mathrm{m}=\left(\mathrm{M}_{\mathrm{H}}+\mathrm{M}_{\mathrm{L}}\right) / 2, \Delta \mathrm{M}=\mathrm{M}_{\mathrm{H}}-\mathrm{M}_{\mathrm{L}}$, $1 / \tau=\Gamma=\left(\Gamma_{\mathrm{H}}+\Gamma_{\mathrm{L}}\right) / 2, \Delta \Gamma=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}$,
- Useful quantities are $x=\Delta \mathrm{M} / \Gamma, \mathrm{y}=\Delta \Gamma / 2 \Gamma$
- D° mixing predictions (from Petrov 2006):

Standard Model mixing predictions

New Physics mixing predictions

D° Mixing

 CDF, CLEO

- Result 10.1 σ from no mixing, though no single measurement is better than 5σ
- Non-zero value allows

for indirect CPV, as well as direct CPV in decay, or a mixture of the two

CPV in Charm

- Expect largest effects in Cabibbo Suppressed Decays. COULD REVEAL NP (see Grossman Kagan \& Nir)
- Nothing yet observed, limits at $<1 \%$ level
- Experiments, in some cases, now measuring differences in CP asymmetries to cancel systematic effects
- Examples (define $A(D \rightarrow f)=\frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f)+\Gamma(\bar{D} \rightarrow \bar{f})}$) if $f=\bar{f}$, CP eigenst
- Belle $A\left(D^{+} \rightarrow \phi \pi^{+}\right)-A\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(-0.51 \pm 0.28 \pm 0.05) \%$ [arXiv: 1110.0694]
- CDF A $\left(\mathrm{D}^{\circ} \rightarrow \pi^{+} \pi^{-}\right)=(-0.22 \pm 0.24 \pm 0.11) \%$ \& $\left(\mathrm{D}^{\circ} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)=$ $(-0.24 \pm 0.22 \pm 0.10) \%$ [CDF Public Note 10269]
- BaBar using T-odd triple products in $\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}_{S} \pi^{+} \pi^{-}$finds $\mathrm{A}_{\mathrm{T}}=$ $(-1.21 \pm 1.00 \pm 0.46) \%$ [arXiv:1105.4410v2]

CPV Time Evolution

- Consider $\quad a[f(t)]=\frac{\Gamma(\bar{M} \rightarrow f)-\Gamma(M \rightarrow f)}{\Gamma(\bar{M} \rightarrow f)+\Gamma(M \rightarrow f)}$
- Define $\quad A_{f} \equiv A(M \rightarrow f), \bar{A}_{f} \equiv A(\bar{M} \rightarrow f), \quad \lambda_{f}=\frac{p}{q} \frac{\bar{A}_{f}}{A_{f}}$
- Only $1 A_{f} \& \Delta \Gamma=0 \Gamma(M \rightarrow f)=N_{f}\left|A_{f}\right|^{2} e^{-\Gamma t}\left(1-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right)$
- Then $a[f(t)]=-\operatorname{Im} \lambda_{f}, \& \lambda_{f}$ is a function of V_{ij} in SM
- For $\mathrm{B}^{\circ}, \Delta \Gamma \approx 0$, but there can be multiple A_{f}

$$
\Gamma(M \rightarrow f)=N_{f}\left|A_{f}\right|^{2} e^{-r t}\left(\frac{1-\left|\lambda_{f}\right|^{2}}{2} \cos (\Delta M t)-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right)
$$

- If in addition $\Delta \Gamma \neq 0$, eg. B_{s}

$$
\Gamma(M \rightarrow f)=N_{f}\left|A_{f}\right|^{2} e^{-\Gamma t}\left(\frac{1+\left|\lambda_{f}\right|^{2}}{2} \cosh \frac{\Delta \Gamma t}{2}+\frac{1-\left|\lambda_{f}\right|^{2}}{2} \cos (\Delta M t)-\operatorname{Re} \lambda_{f} \sinh \frac{\Delta \Gamma t}{2}-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right)
$$

CPV in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \mathrm{X}$

- Interference between mixing
\& decay
- For $f=\mathrm{J} / \psi \phi$ or $\mathrm{J} / \psi \mathrm{f}_{0}$

$$
\varphi_{s}^{S M} \equiv-2 \beta_{s}=-2 \arg \left(-\frac{V_{t s} V_{t b}}{V_{c s} V_{c b}}\right)=-0.04 \mathrm{rad}
$$

- Small CPV expected, good place for NP to appear
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$ is not a CP eigenstate, as it's a vectorvector final state, so must do an angular analysis to separate the CP+ and CP- components

Transversity

$\frac{\mathrm{d}^{4} \Gamma\left(B_{s}^{0} \rightarrow J / \psi \phi\right)}{\mathrm{d} t \mathrm{~d} \cos \theta \mathrm{~d} \varphi \mathrm{~d} \cos \psi} \equiv \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} t \mathrm{~d} \Omega} \propto \sum_{k=1}^{10} h_{k}(t) f_{k}(\Omega)$

k	$h_{k}(t)$	$f_{k}(\theta, \psi, \varphi)$	
1	$\left\|A_{0}\right\|^{2}(t)$	$2 \cos ^{2} \psi\left(1-\sin ^{2} \theta \cos ^{2} \phi\right)$	
2	$\left\|A_{\\|}(t)\right\|^{2}$	$\sin ^{2} \psi\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)$	
3	$\left\|A_{\perp}(t)\right\|^{2}$	$\sin ^{2} \psi \sin ^{2} \theta$	
4	$\Im\left(A_{\\|}(t) A_{\perp}(t)\right)$	$-\sin ^{2} \psi \sin 2 \theta \sin \phi$	
5	$\Re\left(A_{0}(t) A_{\\|}(t)\right)$	$\frac{1}{2} \sqrt{2} \sin 2 \psi \sin ^{2} \theta \sin 2 \phi$	
6	$\Im\left(A_{0}(t) A_{\perp}(t)\right)$	$\frac{1}{2} \sqrt{2} \sin 2 \psi \sin 2 \theta \cos \phi$	
7	$\left\|A_{s}(t)\right\|^{2}$	$\frac{2}{3}\left(1-\sin ^{2} \theta \cos ^{2} \phi\right)$	
8	$\Re\left(A_{s}^{*}(t) A_{\\|}(t)\right)$	$\frac{1}{3} \sqrt{6} \sin \psi \sin ^{2} \theta \sin 2 \phi$	
9	$\Im\left(A_{s}^{*}(t) A_{\perp}(t)\right)$	$\frac{1}{3} \sqrt{6} \sin \psi \sin 2 \theta \cos \phi$	
10	$\Re\left(A_{s}^{*}(t) A_{0}(t)\right)$	$\frac{4}{3} \sqrt{3} \cos \psi\left(1-\sin ^{2} \theta \cos ^{2} \phi\right)$	

for S-wave under ϕ predicted by Stone \& Zhang PRD 79, 074024 (2009)

Transversity II

$$
\begin{aligned}
\left|A_{0}\right|^{2}(t)= & \left|A_{0}\right|^{2} e^{-\Gamma_{s} t}\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)-\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)+\sin \phi_{s} \sin (\Delta m t)\right] \\
\left|A_{\|}(t)\right|^{2}= & \left|A_{\|}\right|^{2} e^{-\Gamma_{s} t}\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)-\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)+\sin \phi_{s} \sin (\Delta m t)\right], \\
\left|A_{\perp}(t)\right|^{2}= & \left|A_{\perp}\right|^{2} e^{-\Gamma_{s} t}\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)+\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)-\sin \phi_{s} \sin (\Delta m t)\right] \\
\Im\left(A_{\|}^{*}(t) A_{\perp}(t)\right)= & \left|A_{\|}\right|\left|A_{\perp}\right| e^{-\Gamma_{s} t}\left[-\cos \left(\delta_{\perp}-\delta_{\|}\right) \sin \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)\right. \\
& \left.-\cos \left(\delta_{\perp}-\delta_{-} \|\right) \cos \phi_{s} \sin (\Delta m t)+\sin \left(\delta_{\perp}-\delta_{\|}\right) \cos (\Delta m t)\right] \\
\Re\left(A_{0}^{*}(t) A_{\|}(t)\right)= & \left|A_{0} \| A_{\|}\right| e^{-\Gamma_{s} t} \cos \left(\delta_{\|}-\delta_{0}\right)\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)-\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)\right. \\
& \left.+\sin \phi_{s} \sin (\Delta m t)\right], \\
\Im\left(A_{0}^{*}(t) A_{\perp}(t)\right)= & \left|A_{0} \| A_{\perp}\right| e^{-\Gamma_{s} t}\left[-\cos \left(\delta_{\perp}-\delta_{0}\right) \sin \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)\right. \\
& \left.-\cos \left(\delta_{\perp}-\delta_{0}\right) \cos \phi_{s} \sin (\Delta m t)+\sin \left(\delta_{\perp}-\delta_{0}\right) \cos (\Delta m t)\right] \\
\left|A_{s}(t)\right|^{2}= & \left|A_{s}\right|^{2} e^{-\Gamma_{s} t}\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)+\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)-\sin \phi_{s} \sin (\Delta m t], \text { only term for f=f } f p\right. \\
\Re\left(A_{s}^{*}(t) A_{\|}(t)\right)= & \left|A_{s} \| A_{\|}\right| e^{-\Gamma_{s} t}\left[-\sin \left(\delta_{\|}-\delta_{s}\right) \sin \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)-\sin \left(\delta_{\|}-\delta_{s}\right) \cos \phi_{s} \sin (\Delta m t)\right. \\
& \left.+\cos \left(\delta_{\|}-\delta_{s}\right) \cos (\Delta m t)\right], \\
\Im\left(A_{s}^{*}(t) A_{\perp}(t)\right)= & \left|A_{s} \| A_{\perp}\right| e^{-\Gamma_{s} t} \sin \left(\delta_{\perp}-\delta_{s}\right)\left[\cosh \left(\frac{\Delta \Gamma}{2} t\right)+\cos \phi_{s} \sinh \left(\frac{\Delta \Gamma}{2} t\right)\right. \\
& \left.-\sin \phi_{s} \sin (\Delta m t)\right], \\
& \left.-\sin \left(\delta_{0}-\delta_{s}\right) \cos \phi_{s} \sin (\Delta m t)+\cos \left(\delta_{0}-\delta_{s}\right) \cos (\Delta m t)\right] .
\end{aligned}
$$

CDF $1 \mathrm{fb}^{-1}$ (2006)
$17.77 \pm 0.10 \pm 0.07 \mathrm{ps}^{-1}$

LHCb $0.34 \mathrm{fb}^{-1}$ (2011) $17.725 \pm 0.041 \pm 0.026 \mathrm{ps}^{-1}$

- Used to calibrate the flavor tagging

CPV in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

- Correlated constraints on $\Delta \Gamma_{\mathrm{s}}$ versus CP violating phase ϕ_{s}
- Ambiguous solution for $\Delta \Gamma_{s} \rightarrow-\Delta \Gamma_{s}, \phi_{s} \rightarrow \pi-\phi_{\mathrm{s}}$.

New LHCb $\phi_{\text {s }}$ result

$\Gamma=0.656 \pm 0.009$
$\pm 0.008\left(\mathrm{ps}^{-1}\right)$
$\Delta \Gamma=0.123$
± 0.029
$\pm 0.011\left(\mathrm{ps}^{-1}\right)$
$\phi_{\mathrm{s}}=0.13 \pm 0.18$
± 0.07 (rad)

- All measurements consistent with SM value

BF11, Oct. 20, 2011

$1^{\text {st }}$ Observation of $B_{s} \rightarrow J / \psi f_{0}(980)$

- In $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$ the S-wave predicted (\& now observed) under the $\phi \quad{ }^{\bar{B}}$
could manifest itself as a $0^{+} \pi^{+} \pi^{-}$
system, the $\mathrm{f}_{0}(980)$ [Stone \& Zhang PRD 79, 074024 (2009)]. As a CP eigenstate can be used to measure ϕ_{s} without angular analysis

$$
\frac{\Gamma\left(J / \psi f_{0} ; f_{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(J / \psi \phi ; \phi \rightarrow K^{+} K^{-}\right)} \approx 0.25
$$

$\mathrm{m}\left(\mathrm{J} / \psi \pi^{+} \pi^{-}\right)$within 90 MeV of 980 MeV
$\mathrm{m}\left(\pi^{+} \pi^{-}\right)$within 30 MeV of B_{s} mass

Confirmations

- Belle, CDF \& D0
- CDF measures τ also, ignoring CP violation, in this CP odd eigenstate. $<\tau_{\mathrm{Bs}}>=1.43 \pm 0.04 \mathrm{ps}$ (PDG)

CPV in $B_{s} \rightarrow J / \psi f_{0}$

Log-likelihood profile

- $\phi_{\mathrm{s}}=-0.44 \pm 0.44 \pm 0.02 \mathrm{rad}$
$■$ Combined with $\mathrm{J} / \psi \phi, \phi_{\mathrm{s}}=0.03 \pm 0.16 \pm 0.07 \mathrm{rad}$
BF11, Oct. 20, 2011

$1^{\text {st }}$ Observation of $B_{s} \rightarrow J / \psi f^{\prime}(1525)$

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$

$$
\begin{aligned}
R_{\text {effective }}^{f_{2}^{\prime}} \equiv & \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{2}^{\prime}(1525), f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi, \phi \rightarrow K^{+} K^{-}\right)}=(19.4 \pm 1.8 \pm 1.1) \% \\
& \text { for }\left|m\left(K^{+} K^{-}\right)-1525 \mathrm{MeV}\right|<125 \mathrm{MeV}
\end{aligned}
$$

CKM B Fit

- Now even better consistency with SM than B_{d}
- However, much more room for NP than in B_{d} system due to less precise measurements

- By definition $|q / p|=1-a_{s \mid}$

$$
a_{s l}=\frac{\Gamma(\bar{M} \rightarrow f)-\Gamma(M \rightarrow \bar{f})}{\Gamma(\bar{M} \rightarrow f)+\Gamma(M \rightarrow \bar{f})}
$$

- Here f is by construction flavor specific, $f \neq \bar{f}$
- Can measure eg. $\overline{\mathrm{B}}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \mu^{-} v$, versus $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} v$,
- Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at $\mu^{+} \mu^{+}$vs $\mu^{-} \mu^{-}$
- $a_{\text {sl }}$ is expected to be very small in the SM, $\mathrm{a}_{\mathrm{sl}}=(\Delta \Gamma / \Delta \mathrm{M})$ tan ϕ, for $\mathrm{B}^{\circ}-7.6 \times 10^{-4}$ for $\mathrm{B}_{\mathrm{s}}+3.4 \times 10^{-5}$ arXiv:1008.1593 [hep-ph]

D° result on a

- Using dimuons

$$
A_{s l}^{b}=(-0.787 \pm 0.172 \pm 0.093) \%
$$

3.9σ from zero

BF11, Oct. 20, 2011

$a_{s I}$ VS ϕ_{S}

Majorana v's

- Several ways of looking for presence of heavy v's (N) in heavy quark decays if they are Majorana (their own antiparticles) and couple to "ordinary" v's

Analogous to v-less nuclear β decay
(b)

Current Searches

- Belle $\mathrm{B}^{-} \rightarrow \mathrm{D}^{-} \ell \ell^{\prime}$
- Found upper limits,

Mode	U.L. $\left[10^{-6}\right]$
$B^{+} \rightarrow D^{-} e^{+} e^{+}$	<2.6
$B^{+} \rightarrow D^{-} e^{+} \mu^{+}$	<1.8

u.l $<4.5 \times 10^{-8}$

See A. Atre, T. Han,
S. Pascoli, \& B. Zhang [arXiv:0901.3589]

Majorana neutrino Mass (GeV)

Searches at higher masses

- CDF general search for like-sign dileptons [A. Abulencia et. al, Phys. Rev. Lett. 98, 221803 (2007)]
- CMS search for events with two isolated likesign leptons, hadronic jets \& missing E_{T} [arXiv:1104.3168]
- ATLAS [arXiv:1108.0366]
- If seen could also be interpreted in terms of other
NP, ie. supersymmetery....

New Exotic States

- Belle discovery of $Z_{b}(10610)$ and $Z_{b}(10650)$
- $\Upsilon(5 S) \rightarrow \Upsilon^{\Upsilon}(\mathrm{nS}) \pi^{+} \pi^{-}$Dalitz plots. See $\Upsilon(n S) \pi^{ \pm}$states
- Also seen in $h_{b}(1 P) \pi^{ \pm} \& h_{b}(2 P) \pi^{ \pm}$decays arXiv:1105.4583

BF11, Oct. 20, 2011

Lepton Flavor Violation

- $\mu \rightarrow \mathrm{e} \gamma$ MEG data 2009 results (Mori EPS2011)

- Data 2010 Results

- Many limits on $\tau \rightarrow \ell \mathrm{hh}, \Lambda \mathrm{h}, \bar{\Lambda} \mathrm{h}, \mu \gamma, \mu \mathrm{h}, 3 \mu$, best limits near 10^{-8} (Belle, BaBar)
BF11, Oct. 20, 2011

Future Acts

- LHCb Upgrade: run at $10^{33} \mathrm{~cm}^{-2} / \mathrm{s}(x 5)$, \& double trigger efficiency on purely hadronic final states
- Super B factories
- Time scales are on the order of 6 years
- BES III, LHCb are happening now

Conclusions

- Heavy Flavor physics is now very sensitive to potential New Physics effects at high mass scales
- LHC experiments have shown their ability by already making world class $1^{\text {st }}$ measurements of flavor physics. They are ready!
- Heavy Flavor experiments are ready to search for and limit New Physics, especially in rare and CP violating b \& c decays at the LHC with the 2011 data and beyond
- Many other interesting flavor results have not been mentioned - apologies
BF11, Oct. 20, 2011

BF11, Oct. 20, 2011

- Separate into B_{d} and B_{s} samples using impact parameter of muons
- Find

$$
\begin{aligned}
a_{\mathrm{sl}}^{d} & =(-0.12 \pm 0.52) \%, \\
a_{\mathrm{sl}}^{s} & =(-1.81 \pm 1.06) \% \cdot 0.04
\end{aligned}
$$

New b-Baryon Decays

$X(4140) ?$

- In $\mathrm{B}^{-} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}^{-}$decays, CDF reported a narrow structure in $\mathrm{m}(\mathrm{J} / \psi \phi)$ mass [arXiv:1101.6058]

No signal evident in LHCb data

Exp: $\mathcal{Z}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$in NUHM1

- CMS discovery contours for $\mathrm{H}, \mathrm{A} \rightarrow \tau^{+} \tau^{-} \rightarrow$ jets (solid line), jet $+\mu$ (dashed), jet $+e$ (dotted) using 30-60 fb-1
- (From O. Buchmueller et al., arXiv:0907.5568)

$B^{0} \longrightarrow \mu^{+} \mu^{-}$

- In fact correlation between $B_{d} \& B_{s} \mu^{+} \mu^{-}$could be crucial

- This can only be done with the LHCb Upgrade
BF11, Oct. 20, 2011

ATLAS B σ 's

CMS Preliminary, $\sqrt{s}=7 \mathrm{TeV}$
Spring 2011

Extract B_{s} fractions

- Crucial to set absolute scale for B_{s} rates, since not given by $\mathrm{e}^{+} \mathrm{e}^{-}$machines.
- Must correct for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{+} X \mu \mathrm{v}$, also $\Lambda_{b} \rightarrow D^{\circ} p X \mu \nu$

$$
f_{s} /\left(f_{u}+f_{d}\right)=0.136 \pm 0.004_{-0.011}^{+0.012}
$$

BF11, Oct. 20, 2011

B_{s} fraction - hadronic

- Also can use hadronic decays + theory $\sim 35 \mathrm{pb}^{-1}$

LHCb Preliminary

Semileptonics: $f_{s} / f_{d}=0.272 \pm 0.008_{-0.022}^{+0.024}$

Λ_{b} Fraction

- Significant p_{t} dependence

$\left[f_{\Lambda_{b}} /\left(f_{u}+f_{d}\right)\right]=0.401 \pm 0.019 \pm 0.106-(0.012 \pm 0.0025 \pm 0.0012) \times p_{t}(\mathrm{GeV})$
- In general agreement with CDF measured at

$$
<p_{\mathrm{t}}>\sim 10 \mathrm{GeV} / \mathrm{c} \quad f_{\Lambda_{b}} /\left(f_{u}+f_{d}\right)=0.281 \pm 0.012_{-0.056-0.086}^{+0.011+0.128}
$$

$\sigma(p p \rightarrow b \bar{b} X)$ using $15 \mathbf{n b}^{-1}$

$\square \mathrm{b} \rightarrow \mathrm{D}^{0} \mathrm{X} \mu \vee, \mathrm{D}^{\circ} \rightarrow \mathrm{K}^{-} \pi^{+}, \sim 280$ events

- In $2<\eta<6$, $(75.3 \pm 5.4 \pm 13.0) \mu$ b LEP frag $\Rightarrow 284 \pm 20 \pm 49 \mu \mathrm{~b}$
- In $2<\eta<6,89.6 \mu \mathrm{~b}$ Tevatron frag $\Rightarrow 338 \pm 24 \pm 58 \mu \mathrm{~b}$
- Also measured charm cross-section, $\sim 20 \times b$

b xsect from $\mathrm{b} \rightarrow \mathrm{J} / \psi \mathrm{X}$

- Here use $5.2 \mathrm{pb}^{-1}$
- $\sigma=288 \pm 4 \pm 48 \mu \mathrm{~b}$

BF11, Oct. 20, 2011

ATLAS σ from $\mathbf{b} \rightarrow \mathrm{J} / \psi \mathbf{X}$

CMS σ from $b \rightarrow X \mu \nu$

- In all cases generally good agreement with NLO calculations, within large errors

CPV Time Evolution

- In general with $A_{f} \equiv A(M \rightarrow f), \bar{A}_{f} \equiv A(\bar{M} \rightarrow f), \quad \lambda_{f}=\frac{p}{q} \frac{\bar{A}_{f}}{A_{f}}$ $\Gamma(M(t) \rightarrow f)=\mathcal{N}_{f}\left|A_{f}\right|^{2} e^{-\Gamma t}\left\{\frac{1+\left|\lambda_{f}\right|^{2}}{2} \cosh \frac{\Delta \Gamma t}{2}+\frac{1-\left|\lambda_{f}\right|^{2}}{2} \cos (\Delta M t)\right.$
See Nierste arXiv:0904.1869 [hep-ph]
- For $\mathrm{B}^{0}, \Delta \Gamma \approx 0$

$$
\left.-\operatorname{Re} \lambda_{f} \sinh \frac{\Delta \Gamma t}{2}-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right\}
$$

$$
\Gamma(M \rightarrow f)=N_{f}\left|A_{f}\right|^{2} e^{-\Gamma t}\left(\frac{1}{2}\left(1-\left|\lambda_{f}\right|\right) \cos (\Delta M t)-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right)
$$

- if only $1 A_{f} \Gamma(M \rightarrow f)=N_{f}\left|A_{f}\right|^{2} e^{-\Gamma t}\left(1-\operatorname{Im} \lambda_{f} \sin (\Delta M t)\right)$
- and a CP eigenstates

$$
a\left[f_{C P}(t)\right]=\frac{\Gamma\left(\bar{M} \rightarrow f_{C P}\right)-\Gamma\left(M \rightarrow f_{C P}\right)}{\Gamma\left(\bar{M} \rightarrow f_{C P}\right)+\Gamma\left(M \rightarrow f_{C P}\right)}=-2 \operatorname{Im} \lambda_{f}
$$

BF11, Oct. 20, 2011 λ_{f} a function of $V_{i j}$ in SM \& thus to α, β or γ

