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Motivation

• Boosted W’s , Z’s essential for studying TeV scale 
physics

• WW scattering may become the most important measurement at 
the LHC

• Boosted particles from heavy particle decay: Z’ -> WW, t’->bW, etc.

• Hadronically decaying boosted W’s, Z’s, tops behave 
like a single jet at the LHC

• Need to distinguish from QCD jets

• Focus on W jets in this talk

  

W-jet

● Hadronically decaying W looks like a single fat jet in a 
collider detector

Experimentally R:  0.4 ~ 0.7
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Two differences between W jets and 
QCD jets

• Two hard subjets (filtering, trimming, pruning...)

• Color singlet (R-cores, Y.Cui, ZH, M.Schwartz) 

  

QCD jet vs W-jet

Group the energy in 0.1x0.1 bins on (eta, phi) plane.

Jets found using R=1.2, C/A. 

QCD jet from W+j->lvj, W-jet from WW->lvjj, Madgraph+Pythia 8

QCD       W jet

  

QCD jet vs W-jet

Group the energy in 0.1x0.1 bins on (eta, phi) plane.

Jets found using R=1.2, C/A. 

QCD jet from W+j->lvj, W-jet from WW->lvjj, Madgraph+Pythia 8

QCD       W jet
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Using tracking information

• HCAL assumed in most studies: 0.1x0.1 binning in 
(eta, phi)

• Tracking information very useful

• Better resolution, finer granularity

• Easier with pile-up: tracks from the primary vertex

• Measures individual charged particles, manifests color connection
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Outline

• Brief review of previous studies

• Identify W’s using the tracking information

• Lessons from LEP

• LHC performance 

• Conclusions
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Identify subjets: jet grooming

• Filtering,trimming, pruning...

• Start from a fat jet with larger R, use smaller R to recluster, discard soft 
‘subjets’ (Butterworth, Davison, Rubin &Salam) 

• W: 2 hard subjets; QCD: 1 hard subjet

  

Filtered mass

Jet mass (R=1.2), 
pt~(500, 550)GeV

jet mass after filtering
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Color connection

• W: color singlet, cleaner, radiation confined in a 
small cone; QCD: radiation more scattered

• R-cores: recluster the jet with a smaller R< Rfat, 
take                               (Y.Cui, ZH, M.Schwartz, 2010)
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FIG. 6: Representative R-core distributions for R = 1.2 fat jets with pjet
T ∈ (500, 550) GeV and

mfilt ∈ (60, 100) GeV. A dissection of the physics producing these shapes is discussed in the text.

between the subjets is then ∆Rsub ∼ 2mjet/pT . In the case that the jet originates from

a color singlet, one expects the additional radiation to be within this radius, while for a

QCD-jet, which is color-connected to the beam, one expects the additional radiation to be

outside this radius. To characterize this radiation pattern in an infrared safe way, we define

R-cores as follows.

• Recluster the fat-jet with a smaller R < Rfat.

• Take the highest pT subjet after reclustering, call its mass m(R) and its transverse

momentum pT (R).

• The mass R-cores are defined as cm(R) ≡ m(R)/m(Rfat).

• The pT R-cores are defined as cpT
(R) ≡ pT (R)/pT (Rfat).

For the application to boosted W ’s, we have Rfat = 1.2 and we consider R-cores with

R = 0.2, 0.3, . . . , 1.1. The mass and pT R-cores tend to carry almost identical information,

and in the end we use only pT R-cores for the final discriminant, since they work a little

better.

10

  

Jet mass/pt for different R

Recluster with different R, take leading jet

* For good W candidates: filtered mass (60, 100)GeV, PT=500GeV
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Multivariate improvement 
(Y.Cui, ZH, M.Schwartz, 2010)

  

Comparison

*                                       sig::  signal and background efficiencies
* 25 variables used, jet pt (500, 550) GeV
* A smaller set of 7 variables give ~4.2  

Maximize the Significance

● Data samples: SM WW->lvqq (signal), Wj->lvj 
(background),  Madgraph+Pythia8

– Binned in 0.1x 0.1 calorimeter cells

– FastJet, R=1.2 C/A 

– Jet PT 200~1000 GeV, divided in 50 GeV bins 

● Initial number of high pt jets:

● Final number after cuts:

● Efficiency: 

● Significance Improvement Characteristic:

A factor of ~2 improvement over filtering for pt 200-1000 GeV
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Variables using tracking

• Individual charged particles can be identified

• Charged multiplicity 

• All jet substructure variables can be defined for 
charged particles as well

• Much better granularity than HCAL/ECAL. But cannot measure neutral 
particles--complementary information. 

• N-subjettiness as an example

Thursday, October 20, 11



Charged multiplicity at e+e- machines

Points: experimental data, Red: MLLA+LPHD, Blue: Pythia 8
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W jets vs QCD jets at high PT
(e+e- machine)

• Compare W-jets with QCD jet with (without) 
hard splitting, 2-prong (1-prong).

• Fix the momenta, simulate showering and 
hadronization over and over again with Pythia8

W

W

q q

l ν

q g

q

z

MW

PT=500GeV
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Jet mass 

Jetmass (GeV)
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* Assumed 0.1x0.1 binning, R=1.2 jets
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Charged Particle Multiplicity 
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N-subjettiness
(J. Thaler & K.V.Tilburg)

N -subjettiness measured with respect to generic subjet axes:

τ̃ (β)N =
1

d0

∑

i

pT,imin
{

(∆R1,i)
β , (∆R2,i)

β , . . . , (∆RN,i)
β
}

. (2.1)

Here, i runs over the constituent particles in a given jet, pT,i are their transverse momenta,

and ∆RJ,i =
√

(∆yJ,i)2 + (∆φJ,i)2 is the distance in the rapidity-azimuth plane between a

candidate subjet J and a constituent particle i. Compared to Ref. [33], we have included

an angular weighting exponent β, and we will often drop the (β) superscript for notational

simplicity. The normalization factor d0 is taken as

d0 =
∑

i

pT,i(R0)
β , (2.2)

where R0 is the characteristic jet radius used in the original jet clustering algorithm.

The choice of subjet axes is crucial for defining N -subjettiness, since Eq. (2.1) partitions

the jet constituents into N so-called Voronoi regions centered on the subjet axes. In Ref. [33],

the exclusive kT algorithm [40, 41] was used to find the directions n̂J . Here, we will focus on

the axes which minimize τ̃N , removing the tilde:

τ (β)N = min
n̂1,n̂2,...,n̂N

τ̃ (β)N . (2.3)

In particular, τ̃N is a function of the N light-like subjet axes n̂J , and τN is the value of this

function at its (global) minimum. This minimization over candidate subjet directions is not

a trivial step and may at first seems computationally daunting, but in Sec. 3.1 we present an

efficient algorithm to perform this task. Once the minimum is found, then the normalization

factor in Eq. (2.2) ensures that 0 ≤ τN ≤ 1.

The angular weighting exponent β is analogous to the parameter a in angularities [35],

with the correspondence a ≡ 2 − β. Collinear safety requires β ≥ 0. In Ref. [33], we found

that β = 1 (corresponding to the jet broadening measure [44]) was particularly effective for

boosted object identification, and this finding will be confirmed in Sec. 4. Interestingly, the

choice β = 1 is also preferred for discriminating light-quark jets from gluon jets [48]. As we

will see in Sec. 3.1, β = 2 (corresponding to the thrust measure [43]) is a special value from

a minimization point of view. In addition, when we discuss jet finding in Sec. 5, β = 2 will

correspond most closely to iterative cone algorithms.

In Fig. 2, we demonstrate how N -subjettiness works on a boosted top jet compared to

a QCD jet with mass near mtop. Shown are the subjet axes and Voronoi regions determined

by the minimum τN with β = 1 and β = 2, as well as τ̃N using subjets from the exclusive

kT algorithm. Note that the partitioning depends crucially on the choice of subjet axes.

Also, unlike recursive clustering procedures like the kT [40, 41] or Cambridge-Aachen [49, 50]

methods, the regions determined by minimizing τ̃N are not directly correlated with the regions

– 4 –

• For a set of particles and N axes, calculate the PT weighted sum of min 
distances (to some power beta)
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Jet radius

• Vary the directions of the axes to find the minimum 
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that β = 1 (corresponding to the jet broadening measure [44]) was particularly effective for

boosted object identification, and this finding will be confirmed in Sec. 4. Interestingly, the

choice β = 1 is also preferred for discriminating light-quark jets from gluon jets [48]. As we

will see in Sec. 3.1, β = 2 (corresponding to the thrust measure [43]) is a special value from

a minimization point of view. In addition, when we discuss jet finding in Sec. 5, β = 2 will

correspond most closely to iterative cone algorithms.

In Fig. 2, we demonstrate how N -subjettiness works on a boosted top jet compared to

a QCD jet with mass near mtop. Shown are the subjet axes and Voronoi regions determined

by the minimum τN with β = 1 and β = 2, as well as τ̃N using subjets from the exclusive

kT algorithm. Note that the partitioning depends crucially on the choice of subjet axes.

Also, unlike recursive clustering procedures like the kT [40, 41] or Cambridge-Aachen [49, 50]

methods, the regions determined by minimizing τ̃N are not directly correlated with the regions

– 4 –

• Quantify how much a set of particles in a jet look 
like N subjets
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* Used charged particles only, no smearing.
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Applications at the LHC 

• More difficult: initial state radiation, underlying 
events

• Repeat the two-step procedure:

• Events passed filtered mass cut (using HCAL 
info only): (60, 100) GeV

• Use the variables to improve over the filtering 
result
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Performance

• Improvements over filtering for S/sqrt(B)

• Use single variables, rectangular cuts

• filtered mass: 1.15,  ntracks: 1.35,  tau2/tau1: 1.35

• Combine two variables (Boosted Decision Tree)

• filtered mass + ntracks: 1.63

• filtered mass + tau2/tau1:1.59

• tau2/tau1 + ntracks: 1.50
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Combine all 3 variables
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~1.75 improvement in significance at signal efficiency ~0.4, 
background efficiency ~0.05 (on top of filtering)
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Discussions

• Did not include experimental resolution--
qualitatively insensitive

• Particle flow

• Z and Higgs the same

• Boosted top?

• Not a color singlet, but contains a W --different from a 3 prong QCD jet
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Conclusions

• Tracking information is very useful for measuring 
jet substructure and identifying boosted massive 
particles

• Variables defined with charged particles are simple 
and powerful

• Awaiting tests and applications at the LHC
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