# New Measurements with Late Decays at LHC 

## Daniel Stolarski

Work in progress with
Peter Graham, Kiel Howe, and Surjeet Rajendran


## Motivations

* Long lived ( $>\mathrm{ns}$ ) charged particles ( $X$ ) exist in many models Dimopoulos, Dine, Raby, Thomas, 1996. Arkani-Hamed, Dimopolous, 2004...
* Can be electrically charged (CHAMPs) or color charged (SIMPs)
* If new long lived particles exist, what should we do after discovery?
* SM interactions sometimes stop $X$ within the detector Arvanitaki, Dimopoulos, Pierce, Rajendran, Wacker 2005.


## $X$ Decays

* Decay of long lived particle can give access to VERY high energy (proton, muon)
* X often decays to invisible particle
* Can measure mass, coupling, and possibly spin of dark matter candidate


## Color Octet (Gluino) Example

* Take 8 under color, neutral under E\&M as example



## Color Octet (Gluino) Example

* Take 8 under color, neutral under E\&M as example



## Decays in ECAL

* ECAL does not contain hadronic radiation
* Can measure angles better because multiple detector components are used
* Estimate resolution in ECAL

$$
\Delta \theta \sim 30^{\circ}
$$

* Allows you to count jets



## Distinguishing Models

## Measurements: Counting jets and muons

## Distinguishing Models

## Measurements: Counting jets and muons

| Mode | $E_{j}(\mathrm{GeV})$ | $\Delta \Theta$ | 1 j | 2 j | 3 j | $\geq 4 \mathrm{j}$ | $1 \mu$ | $2 \mu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}: \tilde{g} \rightarrow q q^{\prime} \chi_{i}^{0, \pm}$ | 50 | 30 | 1 | 28 | 27 | 44 | 13 | 2 |
| $\mathrm{~B}: \tilde{g} \rightarrow g \chi_{i}^{0}$ | 50 | 30 | 36 | 28 | 34 | 3 | 3 | 3 |
| $\mathrm{C}: \tilde{t}_{1} \rightarrow \tilde{a} t$ | 50 | 30 | 32 | 38 | 26 | 0 | 10 | 0 |
| $\mathrm{D}: \tilde{\tau}_{1} \rightarrow \tilde{a} \tau$ | 50 | 30 | 79 | 0 | 0 | 0 | 0 | 0 |

## Distinguishing Models

## Measurements: Counting jets and muons

| Mode | $E_{j}(\mathrm{GeV})$ | $\Delta \Theta$ | 1 j | 2 j | 3 j | $\geq 4 \mathrm{j}$ | $1 \mu$ | $2 \mu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}: \tilde{g} \rightarrow q q^{\prime} \chi_{i}^{0, \pm}$ | 50 | 30 | 1 | 28 | 27 | 44 | 13 | 2 |
| B: $\tilde{g} \rightarrow g \chi_{i}^{0}$ | 50 | 30 | 36 | 28 | 34 | 3 | 3 | 3 |
| $\mathrm{C}: \tilde{t}_{1} \rightarrow \tilde{a} t$ | 50 | 30 | 32 | 38 | 26 | 0 | 10 | 0 |
| $\mathrm{D}: \tilde{\tau}_{1} \rightarrow \tilde{a} \tau$ | 50 | 30 | 79 | 0 | 0 | 0 | 0 | 0 |

Can distinguish models with $\mathrm{O}(100)$ events
Reach of $1-1.5 \mathrm{TeV}$ for gluino

## Three Body Decay Operators

## Three body decays contain more information!

| $J_{\text {CHAMP }} \times J_{\text {WIMP }}$ | Decay operators |  | $J_{\text {CHAMP }} \times J_{\text {WIMP }}$ | Dec | operators |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 0$ | $\begin{aligned} & O_{S}^{s s} \\ & O_{V}^{s s} \end{aligned}$ | $\begin{gathered} \Lambda^{-1}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)(\tilde{X} \tilde{Y}) \\ \Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\tilde{X} \partial_{\mu} \tilde{Y}-\tilde{Y} \partial_{\mu} \tilde{X}\right) \end{gathered}$ | $1 \times 1$ | $\begin{aligned} & O_{S}^{v v} \\ & O_{T}^{v v} \end{aligned}$ | $\begin{gathered} \Lambda^{-1}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \mathcal{Y}^{\mu}\right) \\ \Lambda^{-1}\left(\bar{f}_{R}^{2} \sigma^{\mu \nu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \mathcal{Y}_{\nu}\right) \end{gathered}$ |
| $\frac{1}{2} \times \frac{1}{2}$ | $\begin{gathered} \hline O_{S 1}^{f f} \\ O_{S 2}^{f f} \\ O_{V 1}^{f f} \end{gathered}$ | $\begin{gathered} \Lambda^{-2}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)(\bar{Y} X) \\ \Lambda^{-2}\left(\bar{f}_{R}^{2} X\right)\left(\bar{Y} f_{L}^{1}\right) \\ \Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\bar{Y} \gamma_{\mu} X\right) \end{gathered}$ |  | $\begin{aligned} & O_{V 1}^{v v} \\ & O_{V 2}^{v v} \\ & O_{V 3}^{v v} \\ & \hline \end{aligned}$ | $\begin{gathered} \Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{Y}_{\nu} \partial^{\nu} \mathcal{X}_{\mu}\right) \\ \Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\nu} \partial^{\nu} \mathcal{Y}_{\mu}\right) \\ \Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\nu} \partial_{\mu} \mathcal{Y}^{\nu}-\mathcal{Y}_{\nu} \partial_{\mu} \mathcal{X}^{\nu}\right) \end{gathered}$ |
|  | $\begin{aligned} & O_{T 1}^{f f} \\ & O_{T 2}^{f f} \end{aligned}$ | $\begin{aligned} & \Lambda^{-2}\left(\bar{f}_{L}^{2} \sigma^{\mu \nu} f_{R}^{1}\right)\left(X \sigma_{\mu \nu} Y\right) \\ & \Lambda^{-2}\left(\bar{f}_{L}^{2} \sigma^{\mu \nu} X\right)\left(\bar{f}_{R}^{1} \sigma_{\mu \nu} Y\right) \end{aligned}$ | $1 \times 0$ | $\begin{aligned} & O_{S}^{v s} \\ & O_{V}^{v s} \\ & O_{T}^{v s} \end{aligned}$ | $\begin{gathered} \Lambda^{-2}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)\left(\mathcal{X}^{\mu} \partial_{\mu} \tilde{Y}\right) \\ \Lambda^{-1}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \tilde{Y}\right) \\ \Lambda^{-2}\left(\bar{f}_{R}^{2} \sigma^{\mu \nu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \partial_{\nu} \tilde{Y}-\mathcal{X}_{\nu} \partial_{\mu} \tilde{Y}\right) \end{gathered}$ |

## Three Body Decay Operators

Three body decays contain more information!


| $J_{\text {CHAMP }} \times J_{\text {WIMP }}$ | Decay operators |  |
| :---: | :---: | :---: |
| $1 \times 1$ | $O_{S}^{v v}$ | $\Lambda^{-1}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \mathcal{Y}^{\mu}\right)$ |
|  | $O_{T}^{v v}$ | $\Lambda^{-1}\left(\bar{f}_{R}^{2} \sigma^{\mu \nu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \mathcal{Y}_{\nu}\right)$ |
|  | $O_{V 1}^{v v}$ | $\Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{Y}_{\nu} \partial^{\nu} \mathcal{X}_{\mu}\right)$ |
|  | $O_{V 2}^{v v}$ | $\Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\nu} \partial^{\nu} \mathcal{Y}_{\mu}\right)$ |
|  | $O_{V 3}^{v v}$ | $\Lambda^{-2}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\nu} \partial_{\mu} \mathcal{Y}^{\nu}-\mathcal{Y}_{\nu} \partial_{\mu} \mathcal{X}^{\nu}\right)$ |
| $1 \times 0$ | $O_{S}^{v s}$ | $\Lambda^{-2}\left(\bar{f}_{R}^{2} f_{L}^{1}\right)\left(\mathcal{X}^{\mu} \partial_{\mu} \tilde{Y}\right)$ |
|  | $O_{V}^{v s}$ | $\Lambda^{-1}\left(\bar{f}_{L}^{2} \gamma^{\mu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \tilde{Y}\right)$ |
|  | $O_{T}^{v s}$ | $\Lambda^{-2}\left(\bar{f}_{R}^{2} \sigma^{\mu \nu} f_{L}^{1}\right)\left(\mathcal{X}_{\mu} \partial_{\nu} \tilde{Y}-\mathcal{X}_{\nu} \partial_{\mu} \tilde{Y}\right)$ |

## Split SUSY operator

## Kinematic Distribution


$\Delta \theta=10^{\circ}$

$\Delta \theta=30^{\circ}$

$\Delta \theta=60^{\circ}$

## Split SUSY

Operators with same spins
Operators with different spins

## Discriminating Operators



## Conclusions

* Measurement of decays of long lived charged particles can give insight into very high scale physics and into new sectors
* Measurements are complementary to analyses of $X$ production
* The LHC's detectors can crudely measure angles between jets and muons for decays originating in the ECAL
* Counting jets and muons allows the LHC discriminate different CHAMP and SIMP models with $\mathrm{O}(100)$ events
* If there is a three body decay, Lorentz structure and spin can be partially determined with a similar number of events giving insight into UV completion

Thank You

