Search Strategies For 4th Generation Quarks at the LHC; Beyond the SM4

Michael Geller

Technion, Israel

mic.geller@gmail.com Work in progress, M. G. , Shaouly Bar-Shalom, Gad Eilam

October 20, 2011

・ロト ・回ト ・ヨト

Outline

1 Introduction

- The SM4 & Mass Limits on t' mass
- 2 Motivation: going beyond the "naive" SM4
- 3 t' detection @ the LHC: BSM4
 - Handling the New Signatures @ the LHC
 - Mass Reconstruction in the General Case

4 Results

- Full Simulation
- Results: M_{gen} and H_T distributions
- Results: Excess of jets and b-jets
- Detection Sensitivity
- Current CMS Limit and the BSM4 Case

Summary

The SM4 & Mass Limits on t' mass

The SM4 setup

- SM4: One of simplest extensions of the SM adding a fourth chiral generation.
- Supports a heavy Higgs in accordance with current data and provides hints for dynamic EWSB / Compositeness.
- Addresses several tensions in flavor physics
- Provides new CP violating phases that may become handy for Baryogenesis.

Introduction

Motivation: going beyond the "naive" SM4 t' detection @ the LHC: BSM4 Results Summary

The SM4 & Mass Limits on t' mass

Current Mass Limits (the SM4 case)

- Within SM4, the current limit is $M_{t'} > 450 GeV$ (CMS), replacing the earlier $M_{t'} > 358 GeV$ (CDF).
 - [Luk, arXiv:1110.3246]
 - [Ivanov for CDF, D0 Collaborations, arXiv:1109.1025]
- The limits are achieved assuming t' → Wb (SM4) and looking in the semileptonic channel:

$$pp
ightarrow t'\overline{t'}
ightarrow \left[W^+
ight]_{hadronic} b\left[W^-
ight]_{leptonic} \overline{b}
ightarrow l
u bq\overline{q}\overline{b}$$

BSM4

- In the past few years several BSM4 models were proposed:
 - Extended Higgs sector: multi Higgs frameworks.

[S. Bar-Shalom, S. Nandi, A. Soni, arXiv:1105.6095]

[Hashimoto Phys.Rev. D81 (2010) 075023]

[Hung, Xiong Nucl.Phys. B847 (2011)]

[Luty, Phys. Rev. D41, 2893 (1990)]

[De Pree, Marshall, Sher, Phys. Rev. D80, 037301 (2009)]

• MSSM with 4 generations

[S. Dawson, P. Jaiswal, JHEP 1102 (2011) 055]

• Warped Extra Dimension with 4 generations

[M. Frank, B. Korutlu, M. Toharia, CUMQ-HEP-162.]

• In some of these models new decay modes for the t' may emerge, e.g., $t' \rightarrow ht$, $t' \rightarrow H^+b$, $t' \rightarrow Wb'$, that potentially alter the standard SM4 phenomenology of t' decay.

The 4G2HDM example

• t' decay patterns:
(1)
$$t' \rightarrow W^+ b$$
 (SM4 -like)
(2) $t' \rightarrow W^+ b'$
(3) $t' \rightarrow ht$
(4) $t' \rightarrow H^+ b$

h decays

$$\begin{array}{ccc}
\bullet & h \to b\overline{b} \\
\bullet & h \to W^+W^-, ZZ
\end{array}$$

•
$$H^+$$
 decays
• $H^+ \rightarrow t\overline{b}$
• $H^+ \rightarrow t'\overline{b}$
• $H^+ \rightarrow hW^+$

The LHC signatures for t' pair production

$$pp \rightarrow t'\overline{t'} \rightarrow n_W W + n_b b$$

• 2W+2b (SM4 - like ;
$$n_W = n_b = 2$$
)

•
$$6W+2b \ (n_W = 6, \ n_b = 2)$$

•
$$2W+6b \ (n_W = 2, \ n_b = 6)$$

Handling the New Signatures @ the LHC Mass Reconstruction in the General Case

Handling the New Signatures @ The LHC

Summary

- For the BSM4 case, the fit to the SM4 *lvbqqb* signature may fail
- e.g. for $BR(t' \rightarrow ht \rightarrow WWt) \sim 1$, $M_{fit} = m(l\nu b) = m(\overline{q}q\overline{b})$ is substantially lower - exactly where the $t\overline{t}$ background peak is located.

・ロト ・回ト ・ヨト

Handling the New Signatures @ the LHC Mass Reconstruction in the General Case

Summary

Mass Reconstruction in the General Case

- We use a reconstruction strategy that is general to the 1lepton+nj+\vec{E}_T events.
- We choose the correct partition of the event:

$$m(l\nu) = M_W$$

 $m(Left Side) = m(Right Side) \equiv M_{gen}$

• *M_{gen}* replacing the "standard" *M_{fit}* used by CMS.

Image: A math a math

 Introduction
 Full Simulation

 Motivation: going beyond the "naive" SM4
 Results: M_{gen} and H_T distributions

 t' detection @ the LHC: BSM4
 Results: Excess of jets and b-jets

 Detection Simulation
 Detection Similarity

 Summary
 Current CMS Limit and the BSM4 Case

Full Simulation

- We use Madgraph/MadEvent to generate signal and two $\int Ldt = 1$ fb⁻¹ sets of background events of: W+jets, $t\bar{t}$ +jets.
- K-factors:
 - 1.5 for the signal and $t\overline{t}$ +jets background
 - 1.3 for W+jets background
- MLM parton-jet matching method for the background.
- BRIDGE for the decay of the new particles in the signal
- Pythia for the decay of the SM particles, shower, fragmentation and hadronizations.
- PGS with the LHC card for the detector simulation

イロト イポト イヨト イヨト

Full Simulation **Results:** M_{gen} and H_T distributions Results: Excess of jets and b-jets Detection Sensitivity Current CMS Limit and the BSM4 Case

・ロト ・回ト ・ヨト

Results: M_{gen} and H_T distributions

• M_{gen} and $H_T = \sum |p_T|$ for the $pp \rightarrow t'\overline{t'} \rightarrow 2W + 6b$ signature with $M_{t'} = 450 \text{ GeV}$.

Introduction	Full Simulation
Motivation: going beyond the "naive" SM4	Results: M_{gen} and H_T distributions
t' detection @ the LHC: BSM4	Results: Excess of jets and b-jets
Results	Detection Sensitivity
Summary	Current CMS Limit and the BSM4 Case

Results: Excess of jets and b-jets

 2W+6b exhibits a higher number of jets and b-jets with respect to the background and with respect to the SM4 2W+2b (not shown)

• Gives an extra handle for isolating the signal

Introduction	Full Simulation
Motivation: going beyond the "naive" SM4	Results: M_{gen} and H_T distributions
t' detection @ the LHC: BSM4	Results: Excess of jets and b-jets
Results	Detection Sensitivity
Summary	Current CMS Limit and the BSM4 Case

Detection Sensitivity

• We thus use the following cuts:

1
$$M_{gen} > 300 \ GeV$$

- **2** $H_T > 600 \ GeV$

Process	without cuts	n _{j+bj}	Mgen	H _T	all cuts combined	$\frac{S}{\sqrt{B}}$
$t\overline{t} + jets$	1206	179	536	678	93	
W + jets	626	9	353	443	5	
$6W+2b M_{t'} = 350 GeV$	168	80	87	135	46	4.65
$2W+6b M_{t'} = 350 GeV$	172	99	93	138	56	5.66
$6W+2b M_{t'} = 400 GeV$	113	58	60	99	34	3.43
$2W+6b M_{t'} = 400 GeV$	119	74	69	104	45	4.55
$6W+2b M_{t'} = 450 GeV$	77	43	40	74	23	2.32
2W+6b $M_{t'}$ = 450 GeV	70	46	43	65	29	2.93

• In contrast, with the "standard" CMS method $\frac{S}{\sqrt{B}} \sim 1.7$ for $M_{t'} = 450 \ GeV$ and ~ 2.6 for $M_{t'} = 350 \ GeV$.

Introduction	Full Simulation
Motivation: going beyond the "naive" SM4	Results: M_{gen} and H_T distributions
t' detection @ the LHC: BSM4	Results: Excess of jets and b-jets
Results	Detection Sensitivity
Summary	Current CMS Limit and the BSM4 Case

Current CMS Limit and the BSM4 Case

- CMS Method: performing a 2d (M_{fit} and H_T) likelihood fit to the data under the hypothesis of S+B and B only. They find an 95% CL exclusion of $M_{t'} < 450 GeV$.
- We simulate the CMS analysis by imposing cuts on M_{fit} and H_T and counting the number of events (N_{SM4}) that survive, assuming the SM4 signature $\overline{t'}t' \rightarrow 2b + 2W$ with $M_{t'} = 450 \ Gev$.
- We use N_{SM4} as our reference value for a 95% CL exclusion.
- Thus, we interpret the case of $N_{BSM4} < N_{SM4}$ to have a weaker bound on the t' mass in the BSM4 framework.

向下 イヨト イヨト

Introduction	Full Simulation
Motivation: going beyond the "naive" SM4	Results: M_{gen} and H_T distributions
t' detection @ the LHC: BSM4	Results: Excess of jets and b-jets
Results	Detection Sensitivity
Summary	Current CMS Limit and the BSM4 Case

Bounds for BSM4

Process	# events after cuts
SM4 2W+2b $M_{t'} = 450 \ GeV$	$N_{SM4} = 38$
BSM4 6W+2b $M_{t'} = 350 \ GeV$	$N_{BSM4} = 32 < N_{SM4}$
BSM4 2W+6b $M_{t'} = 350 \ GeV$	$N_{BSM4} = 42 \sim N_{SM4}$
BSM4 6W+2b $M_{t'} = 400 \ GeV$	$N_{BSM4} = 26 < N_{SM4}$
BSM4 2W+6b $M_{t'} = 400 \ GeV$	$N_{BSM4} = 33 < N_{SM4}$
BSM4 6W+2b $M_{t'} = 450 \ GeV$	$N_{BSM4} = 20 < N_{SM4}$
BSM4 2W+6b $M_{t'} = 450 \ GeV$	$N_{BSM4} = 28 < N_{SM4}$

• Based on the table above we estimate the current CMS limit on the t' mass to be around 350 *GeV* in the BSM4 case.
 Introduction
 Full Simulation

 Motivation: going beyond the "naive" SM4
 Results: Mgen and H_T distributions

 t' detection @ the LHC: BSM4
 Results: Excess of jets and b-jets

 Besults:
 Detection Sensitivity

 Summary
 Current CMS Limit and the BSM4 Case

Higgs Bounds: Another Success of BSM4

• CMS recently reported a 120 - 600 GeV exclusion of SM4 Higgs.

[Koryton, CMS Collaboration, EPS-HEP 2011, July 21 -27, 2011; Grenoble, Rhone-Alpes France]

- SM4: Higgs production by gluon fusion is enhanced by a factor of ~ 10 (t' and b' loops).
- In 4G2HDM Higgs production by gluon fusion depends on α and β , through the intereference between the heavy quark loops.
- Either Higgs production or Higgs decay to W^+W^- can be suppressed in some areas of parameter space leading to an invisible Higgs.

Summary

- Standard search strategies for 4th gen quarks which assume the simplest SM4 framework fail for generic BSM4 scenarios for 4th gen dynamics, resulting in a lower limit for t' and b' masses.
- We discussed a method that is suitable for more complex t' decay patterns, in particular, the 6W+2b & 2W+6b signatures that can emerge in BSM4 frameworks that have e.g. $BR(t' \rightarrow th) \sim 1$.
- We estimate that the current best limit on the t' mass in this case to be 350 *GeV* instead of the 450 *GeV* recently reported by CMS.

イロト イヨト イヨト イヨト