tt Forward-Backward Asymmetry from Loops of New Strongly Coupled Quarks

$\label{eq:constraint} \begin{array}{l} \mbox{Thomas McElmurry} \\ \mbox{BNL} \rightarrow \mbox{University of Rochester} \end{array}$

H. Davoudiasl, T.M., A. Soni, arXiv:1108.1173

Brookhaven Forum Upton, New York 2011-10-19

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Forward-backward asymmetry

- Choose Forward and Backward directions along beam axis.
- Define tt
 events as F or B depending on whether the t is found in the F or B hemisphere.
- Asymmetry:

$$\mathsf{A} \equiv \frac{\mathsf{N}_{\mathsf{F}} - \mathsf{N}_{\mathsf{B}}}{\mathsf{N}_{\mathsf{F}} + \mathsf{N}_{\mathsf{B}}}$$

To see an asymmetry, one needs an asymmetric initial state:

1

- At a *pp* collider, one proton is as good as the other.
- At a pp̄ collider, gluon and sea quark PDFs are the same in p as in p̄.
- We need a $u\bar{u}$ or $d\bar{d}$ initial state.

Forward-backward asymmetry

at the Tevatron

- The Tevatron is a good place to measure the asymmetry.
 - It's a pp̄ collider.
 - Protons go clockwise (\equiv Forward).
 - ► Antiprotons go anticlockwise (≡ Backward).
 - $t\bar{t}$ production is dominated by the $q\bar{q}$ channel.
- ► The value of *A* depends on the frame of reference.
 - Lab frame? Center of mass?
 - We'll study the asymmetry in the $t\bar{t}$ rest frame: $A^{t\bar{t}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Forward-backward asymmetry

in the Standard Model

- At leading order, A = 0 due to charge-conjugation symmetry
- NLO QCD permits an asymmetry due to interference between C-even and C-odd amplitudes

(日) (日) (日) (日) (日) (日) (日)

- Virtual corrections give a positive asymmetry
- Real radiation gives a negative asymmetry
- Net result: $A^{tar{t}} pprox 0.05$. [Kühn, Rodrigo 1998]

Tevatron results

[CDF, Phys. Rev. D83, 112003 (2011); D0, arXiv:1107.4995]

- CDF measures $A^{t\bar{t}} = 0.158 \pm 0.075 \dots$
 - ... with a significant dependence on invariant mass:
 - $A^{t\bar{t}}(M_{t\bar{t}} < 450 \,\text{GeV}) = -0.116 \pm 0.153$
 - $A^{t\bar{t}}(M_{t\bar{t}} > 450 \,\text{GeV}) = 0.475 \pm 0.114$
 - ... and on separation in rapidity:
 - $A_{t\bar{t}}^{t\bar{t}}(|\Delta y_{t\bar{t}}| < 1) = 0.026 \pm 0.118$
 - $A^{t\bar{t}}(|\Delta y_{t\bar{t}}| > 1) = 0.611 \pm 0.256$
- D0 measures $A^{t\bar{t}} = 0.196 \pm 0.065 \dots$
 - ... without the strong enhancement at high $M_{t\bar{t}}$ and $|\Delta y_{t\bar{t}}|$.

The theorists' challenge

How to explain the observed asymmetry without changing the total cross section or violating other constraints?

- Various ideas:
 - ► Flavor-changing Z' ...
 - New scalar in the t-channel ...
 - Axigluons ...
- A new idea: A^{tt̄} arises from loop diagrams involving new heavy quarks.

(日) (日) (日) (日) (日) (日) (日)

A model

- New heavy quarks t' and b', with mass m_Q
- New scalars ϕ^0, ϕ^{\pm} , with mass m_{ϕ}
- Flavor-changing interactions $\phi \bar{q} Q$

$$\mathcal{L} \supset \lambda_{ut'} \phi^{0} \bar{u}t' + \lambda_{ub'} \phi^{+} \bar{u}b' + \lambda_{dt'} \phi^{-} \bar{d}t' + \lambda_{db'} \phi^{0} \bar{d}b' + \lambda_{tt'} \phi^{0} \bar{t}t' + \lambda_{tb'} \phi^{+} \bar{t}b' + \text{H.C.}$$

Some of these Yukawa couplings will need to be strong.

A model

- New heavy quarks t' and b', with mass m_Q
- New scalars ϕ^0, ϕ^{\pm} , with mass m_{ϕ}
- Flavor-changing interactions $\phi \bar{q} Q$

$$\mathcal{L} \supset \lambda_{\boldsymbol{u}}(\phi^{0}\bar{\boldsymbol{u}}t' + \phi^{+}\bar{\boldsymbol{u}}b') + \lambda_{\boldsymbol{d}}(\phi^{-}\bar{\boldsymbol{d}}t' + \phi^{0}\bar{\boldsymbol{d}}b') + \lambda_{\boldsymbol{t}}(\phi^{0}\bar{\boldsymbol{t}}t' + \phi^{+}\bar{\boldsymbol{t}}b') + \text{H.C.}$$

Some of these Yukawa couplings will need to be strong.

New diagrams Boxes!

The new particles appear in box diagrams ...

 ... which interfere with the LO diagram and produce an asymmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

New diagrams

Triangles!

We also have vertex corrections

... analogous to SM diagrams involving the Higgs.

[Stange, Willenbrock 1993]

These diagrams do not produce an asymmetry, but do affect the total cross section.

・ コット (雪) (小田) (コット 日)

Computation

- So we have some loops to compute.
- Evaluate the traces by hand ...
- ► ... and check using QGRAF and FORM.
- Cancel UV singularities analytically.
- Integrate numerically over Feynman parameters and phase space.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Asymmetry

Can we match the CDF measurement?

For what values of λ_u , λ_d , λ_t , m_Q , m_ϕ do we pass these six criteria?

Agreement with the CDF inclusive asymmetry, within 2σ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- and with the high and low $M_{t\bar{t}}$ bins, within 2σ
- and with the high and low $|\Delta y_{t\bar{t}}|$ bins, within 2σ
- and with the SM total cross section, within 30%

Asymmetry

Can we match the CDF measurement?

Cross-hatched: $\lambda_u = 1, \lambda_d = 3, \lambda_t = 5$ Shaded: $\lambda_u = 1, \lambda_d = 2, \lambda_t = 6$ Hatched: $\lambda_u = 0, \lambda_d = 3.5, \lambda_t = 4.5$

Asymmetry

Can we match the CDF measurement? Yes.

Cross-hatched: $\lambda_u = 1, \lambda_d = 3, \lambda_t = 5$ Shaded: $\lambda_u = 1, \lambda_d = 2, \lambda_t = 6$ Hatched: $\lambda_u = 0, \lambda_d = 3.5, \lambda_t = 4.5$

Predictions and constraints

► This model predicts new heavy quarks *t*' and *b*'.

- Experimental searches rule out e.g. $t' \rightarrow Wb$ with $m'_t \leq 450 \text{ GeV}$. [CMS 2011]
- ► These bounds do not necessarily apply to our model, since we can have decay modes such as t' → tφ → Wbqq̄.
- We can produce same-sign top pairs: $uu \rightarrow tt$.
 - ▶ We estimate that current constraints [CMS, JHEP 1108, 005 (2011)] do not exclude our model if $m_Q \gtrsim 400$ GeV.
 - We can also evade the bounds by choosing couplings such that λ_u is small.

(日) (日) (日) (日) (日) (日) (日)

Predictions and constraints

Our model allows exotic single-top production.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- This can be suppressed by $\lambda_{u} \rightarrow 0$.
- Or, if $\lambda_{ut'} \approx -\lambda_{ub'}$, the two diagrams cancel.

Discussion

- Strongly coupled heavy quarks appearing in loops can produce an A^{tt̄} consistent with the CDF results.
- The D0 results can also be accommodated with smaller couplings.
- Various predictions and possibilities for the LHC:
 - Discovery of t', b'
 - Decay modes such as $t'
 ightarrow t \phi$
 - Single t', b' production
 - Forward-backward asymmetry in $t'\bar{t}'$ and $b'\bar{b}'$ production

(ロ) (同) (三) (三) (三) (○) (○)