Introduction Flavored Dark Matter Phenomenology of τ FDM

Flavored Dark Matter Direct detection and Colliders

Prateek Agrawal

Maryland Center for Fundamental Physics University of Maryland

> October 19, 2011 Brookhaven Forum 2011

> > arXiv: 1109.3516 PA, S. Blanchet, Z. Chacko, C. Kilic

> > > 臣

イロン イヨン イヨン イヨン

Introduction Flavored Dark Matter Phenomenology of τ FDM

Evidence for WIMP dark matter Why dark matter (at the weak scale)?

The astrophysical evidence for dark matter is very strong.

- Galactic rotation curves
- Cosmic Microwave Background
- Big Bang Nucleosynthesis
- Gravitational lensing observations

< ロ > < 同 > < 三 > < 三 >

Weakly interacting massive particles naturally yield observed relic abundance.

New weak scale physics motivated by the hierarchy problem in the standard model Introduction Flavored Dark Matter Phenomenology of τ FDM

Evidence WIMP miracle

The WIMP miracle

Miracle up to orders of magnitude

$$\begin{split} \langle \sigma_A v \rangle &\sim \frac{\lambda^4 m_\chi^2}{32\pi m_\phi^4} \sim \frac{(0.45)^4 (100 \text{ GeV})^2}{32\pi (200 \text{ GeV})^4} \sim 3 \times 10^{-26} \text{ cm}^3/\text{s} \\ \sigma^{(n)} &\sim \frac{\lambda^4 m_n^2}{64\pi m_\phi^4} \sim \frac{(0.45)^4 (1 \text{ GeV})^2}{64\pi (200 \text{ GeV})^4} \sim 5 \times 10^{-41} \text{ cm}^2 \end{split}$$

Current limits from Xenon100 experiment: $10^{-44}~{\rm cm}^2$ (for $m_\chi \sim 100~{\rm GeV}$)

・ロト ・日ト ・ヨト ・ヨト

э

Flavored dark matter

Who ordered that?

Renormalizable interactions

Focus on the case where dark matter

- is a Dirac fermion.
- is a SM singlet.
- transforms under $U(3)_E$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Flavor structure

- \blacktriangleright Lepton sector of SM has $U(3)_L \times U(3)_E$ global symmetry
 - \blacktriangleright Broken to $U(1)^3$ by Yukawa couplings of the SM

$$y_A{}^i L^A E^c_i H + h.c.$$

 $y_A{}^i: (3, \bar{3}) ext{ under } SU(3)_L imes SU(3)_E$

Minimal flavor violating interactions

$$\lambda_j{}^i = \left(\alpha I + \beta \ y^{\dagger} y\right)_j{}^i$$
$$[m_{\chi}]_i{}^j = \left(m_0 I + \Delta m \ y^{\dagger} y\right)_i{}^j$$

ヘロン 人間 とくほど くほどう

- dark matter flavors have small splittings
- equal coupling for different flavors

Relic abundance

• Annihilation via t-channel ϕ

$$\langle \sigma v \rangle \approx \frac{\lambda^4 m_\chi^2}{32 \pi (m_\chi^2 + m_\phi^2)^2}$$

With additional couplings more channels open up, allowing smaller λ values.

Direct detection

"Leptophilic dark matter"

Dark matter can interact with nuclei via photon exchange

IntroductionRelic abundanceFlavored Dark MatterDirect detectionPhenomenology of τ FDMLarge Hadron Collider

Direct detection

"Leptophilic dark matter"

Dark matter can interact with nuclei via photon exchange

Direct detection

"Leptophilic dark matter"

Dark matter can interact with nuclei via photon exchange

IntroductionRelic abundanceFlavored Dark MatterDirect detectionPhenomenology of τ FDMLarge Hadron Collider

Direct detection

"Leptophilic dark matter"

Dark matter can interact with nuclei via photon exchange

Introduction Flavored Dark Matter Phenomenology of auFDM

Relic abundance Direct detection Large Hadron Collider

Direct detection bounds

"Leptophilic dark matter"

The spectrum

Spectrum

$$\begin{split} m_{\chi,e} &= 90 \,\, \mathrm{GeV} \\ m_{\chi,\mu} &= 90 \,\, \mathrm{GeV} \\ m_{\chi,\tau} &= 70 \,\, \mathrm{GeV} \\ m_{\phi} &= 150 \,\, \mathrm{GeV} \end{split}$$

- ► Weak production ⇒ few events
- ► Lots of leptons ⇒ clean signal
- Not early discovery at LHC

Pair production of ϕ at 14 TeV LHC

Image: A match the second s

→

Signal topologies

- \blacktriangleright Since coupling is universal, ϕ decays to all three flavors
- Three event topologies

Long-long decay chain is most promising

Signal: Four leptons + missing transverse energy

Backgrounds and cuts

Pre-selection: At least 4 leptons, $\ensuremath{\text{pT}}\xspace > 7$ GeV each

$$\begin{split} \ell^+ \ell^- \ell^+ \ell^- \\ & \triangleright \ Z \to \ell^+ \ell^- \\ & \triangleright \ Z \to \tau^+ \tau^- \to \ell^+ \ell^- \\ & \triangleright \ Z^*, A^* \to \ell^+ \ell^- \\ & t \bar{t} \ell^+ \ell^- \\ & \flat \ t \to b(W \to l\nu) \\ W^+ W^- \ell^+ \ell^- \\ & \flat \ W \to l\nu \end{split}$$

Leptons

- At least 2 leptons, E > 50 GeV each Dijet veto
 - \blacktriangleright Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each

Z-veto

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

イロト イポト イヨト イヨト

Missing energy cut: MET > 20 GeV

Backgrounds and cuts

Pre-selection: At least 4 leptons, $\ensuremath{\text{pT}}\xspace > 7$ GeV each

$$\begin{array}{ccc} \ell^+\ell^-\ell^+\ell^- & \triangleright & Z \to \ell^+\ell^- \\ \triangleright & Z \to \tau^+\tau^- \to \ell^+\ell^- \\ \triangleright & Z^*, A^* \to \ell^+\ell^- \\ t\bar{t}\ell^+\ell^- & \flat & t \to b(W \to l\nu) \\ W^+W^-\ell^+\ell^- & \flat & W \to l\nu \end{array}$$

Leptons

 \blacktriangleright At least 2 leptons, $E>50~{\rm GeV}$ each

Dijet veto

 \blacktriangleright Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each

Z-veto

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

イロト イポト イヨト イヨト

Missing energy cut: $\mathrm{MET}>20~\mathrm{GeV}$

Backgrounds and cuts

Pre-selection: At least 4 leptons, $\ensuremath{\text{pT}}\xspace > 7$ GeV each

$$\begin{split} \ell^+ \ell^- \ell^+ \ell^- & \triangleright \ Z \to \ell^+ \ell^- \\ \triangleright \ Z \to \tau^+ \tau^- \to \ell^+ \ell^- \\ \triangleright \ Z^*, A^* \to \ell^+ \ell^- \\ t \overline{t} \ell^+ \ell^- & \flat \ t \to b(W \to l\nu) \\ W^+ W^- \ell^+ \ell^- \\ \triangleright \ W \to l\nu \end{split}$$

Leptons

 $\blacktriangleright\,$ At least 2 leptons, $E>50~{\rm GeV}$ each

Dijet veto

 \blacktriangleright Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each

Z-veto

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

イロト イポト イヨト イヨト

Missing energy cut: MET > 20 GeV

Backgrounds and cuts

Pre-selection: At least 4 leptons, $\ensuremath{\text{pT}}\xspace > 7$ GeV each

$$\ell^{+}\ell^{-}\ell^{+}\ell^{-}$$

$$Z \to \ell^{+}\ell^{-}$$

$$Z \to \tau^{+}\tau^{-} \to \ell^{+}\mu^{-}$$

$$Z^{*}, A^{*} \to \ell^{+}\ell^{-}$$

$$t\bar{t}\ell^{+}\ell^{-}$$

$$t \to b(W \to l\nu)$$

$$W^{+}W^{-}\ell^{+}\ell^{-}$$

$$W \to l\nu$$

Leptons

▶ At least 2 leptons, E > 50 GeV each

Dijet veto

 \blacktriangleright Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each '-veto

イロト イポト イヨト イヨト

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

Missing energy cut: $\mathrm{MET}>20~\mathrm{GeV}$

Backgrounds and cuts

Pre-selection: At least 4 leptons, $\ensuremath{\text{pT}}\xspace > 7$ GeV each

$$\begin{array}{l} \ell^+ \ell^- \ell^+ \ell^- \\ \triangleright \ Z \to \ell^+ \ell^- \\ \triangleright \ Z \to \tau^+ \tau^- \to \ell^+ \ell^- \\ \triangleright \ Z^*, A^* \to \ell^+ \ell^- \\ t \overline{t} \ell^+ \ell^- \\ \triangleright \ t \to b(W \to l\nu) \\ W^+ W^- \ell^+ \ell^- \\ \triangleright \ W \to l\nu \end{array}$$

Leptons

- At least 2 leptons, E > 50 GeV each Dijet veto
 - \blacktriangleright Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each

Z-veto

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

イロト イポト イヨト イヨト

Missing energy cut: MET > 20 GeV

Backgrounds and cuts

Pre-selection: At least 4 leptons, pT > 7 GeV each

$$\begin{array}{l} \ell^+ \ell^- \ell^+ \ell^- \\ \triangleright \ Z \to \ell^+ \ell^- \\ \triangleright \ Z \to \tau^+ \tau^- \to \ell^+ \ell^- \\ \triangleright \ Z^*, A^* \to \ell^+ \ell^- \\ t \overline{t} \ell^+ \ell^- \\ \triangleright \ t \to b(W \to l\nu) \\ W^+ W^- \ell^+ \ell^- \\ \triangleright \ W \to l\nu \end{array}$$

Leptons

 $\blacktriangleright\,$ At least 2 leptons, E>50 GeV each

Dijet veto

• Events with ≥ 2 jets, $p_T > 30~{\rm GeV}$ each

Z-veto

▶ Same-flavor, opposite-charge leptons with $|m_{inv} - m_Z| < 7 \text{ GeV}$

< ロ > < 同 > < 三 > < 三 >

Missing energy cut: $\mathrm{MET}>20~\mathrm{GeV}$

57.04 signal + 14.34 SM background $@\,14$ TeV LHC at $100~{
m fb}^{-1}$

Faking $\tau {\rm FDM}$ at the LHC

Can we establish that the dark matter signal we observe is τ -fdm?

Prateek Agrawal

Flavored Dark Matter

IntroductionRelic abundanceFlavored Dark MatterDirect detectionPhenomenology of τ FDMLarge Hadron Collider

Flavor-charge correlations

Flavor and charge correlation of two most upstream leptons is a good discriminant

► FDM

IntroductionRelic abundanceFlavored Dark MatterDirect detectionPhenomenology of τ FDMLarge Hadron Collider

Flavor-charge correlations

Prateek Agrawal

Flavored Dark Matter

Conclusion

- Flavored dark matter is a simple possibility which has not been explored in a model-independent way.
- ► It is possible to distinguish a *τ*FDM model from unflavored dark matter at the LHC.
- \blacktriangleright Our analysis for the $\tau\text{-FDM}$ can be extended in many ways
 - Kinematic variables to identify particles in decay chains (e.g. Hemisphere method)
 - Kinematic distributions: edges, end-points, mT2
 - Identification of hadronically decaying τ s
- Similar conclusions are expected to hold for quark-flavored dark matter at colliders. Stay tuned...

Introduction Flavored Dark Matter Phenomenology of τ FDM

Backup slide: Flavor-charge correlations

