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4-Fermion Operators
Augmentation of chirally symmetric fermion 
theory with irrelevant operator - nontrivial IR 
behavior

NJL - an effective QFT for nucleon masses

non-perturbative arguments favor the 
creation of a gap - broken chiral symmetry



The basic NJL Model
L = iψ̄ �∂ψ + g0

�
(ψ̄ψ)2 − (ψ̄γ5ψ)

2
�

for positive g0, have an attractive fermion potential

+ +  ....

m−m0 = Σ(p,m, g,Λ)| �p = mself consistency relation:

for m0=0, there exist non-trivial solutions:

m = −g0mi

2π4

� Λ d4p

p2 −m2
m �= 0 when g0Λ

2 > 2π2

trivial sol’n is unstable



Auxiliary Scalars
we can analyze this theory in a simple way

L = iψ̄ �∂ψ +
g̃0
Λ2

ψ̄LψRψ̄RψL

≡ iψ̄ �∂ψ − Λ2|H|2 + g̃0Hψ̄RψL + h.c.

H =
g̃0

Λ2
ψ̄LψRImpose the H eom:

defines theory at scale Λ

Quantum corrections:
fermion bubble approx.

2

H carries chiral charge



Dynamics in the IR
At an IR scale μ, the theory develops dynamics:

If we integrate out the field H we reproduce the four–fermion vertex as an induced inter-
action with G ≡ g2/Λ2. Note that G > 0 implies an attractive interaction and permits
the factorization in this form. More specifically, eq.(B.3) is the effective Lagrangian on
a scale Λ. To obtain the effective Lagrangian on a scale µ < Λ in the fermion bubble
approximation we integrate out the fermion field components on scales µ ↔ Λ. The full
induced effective Lagrangian at the new scale µ will then take the form:

Lµ = Lkinetic + gψLψRH + h.c.

+ZH |∂νH|2 − m2
HH†H −

λ0

2
(H†H)2 − ξ0RH†H (B.4)

Here R is the geometric scalar curvature, and we see there is an induced “nonminimal”
coupling of the Higgs field to gravity, ξ. A direct evaluation of the induced parameters
by computing the relevant Feynman loops gives:

ZH =
g2Nc

(4π)2
log(Λ2/µ2); m2

H = Λ2 −
2g2Nc

(4π)2
(Λ2 − µ2)

λ0 =
2g4Nc

(4π)2
log(Λ2/µ2); ξ0 =

1

6

g2Nc

(4π)2
log(Λ2/µ2). (B.5)

(the parameter g is unrenormalized at this stage in fermion loop approximation). The
induced low energy parameters, ZH and λ0, and ξ0 are determined in terms of Λ, and we
are interested in the µ ≈ 0 limit of the theory.

We emphasize that the effective theory applies in either the spontaneously broken or
unbroken phases. The broken phase is selected by demanding that m2

H < 0 for scales
µ2 % Λ2, thus requiring that Λ2(1 − g2Nc/8π2) < 0; hence, g2 > 8π2/Nc = g2

c defines
a critical coupling. On the other hand, for positive m2

H as µ → 0 the theory remains
unbroken (this is equivalent to a subcritical four–fermion coupling constant, g2 ≤ g2

c ).

Let us bring the effective Lagrangian into a conventionally normalized form by rescal-
ing the field H → H/

√
ZH :

L = Lkinetic + g̃ψLψRH + h.c.

+|∂νH|2 − m̃2
HH†H −

λ̃

2
(H†H)2 − ξRH†H (B.6)

Where we find:

g̃2 = g2/ZH =
16π2

Nc log(Λ2/µ2)

m̃2
H = m2

H/ZH (B.7)

λ̃ = λ0/Z
2
H =

32π2

Nc log(Λ2/µ2)

ξ = ξ0/ZH = 1/6

169

ZH =
g̃20

(4π)2
logΛ2/µ2 m2

H
= Λ2 − 2

g̃20
(4π)2

�
Λ2 − µ2

�

λ0 =
2g̃40
(4π)2

logΛ2/µ2

mass is driven negative at critical coupling
stabilized by quartic

chiral symmetry spontaneously broken



The “minimal” 
standard model

Augment a chiral SM with a 4 fermi operator 
for top quarks

δL =
g2

Λ2
t̄LtRt̄RtL

could arise from a variety of different UV scenarios
i.e. gauge symmetry with coupling g broken at scale Λ

L

L

R

R

for super-critical coupling, top 
quark gains a mass, and weak 
interactions are spontaneously 

broken

Bardeen, Hill, Lindner 1990



5D Orbifolds1 Introduction

2 Basic Setup

This model is built on 5D Minkowski space, with the distance element on this space given
by:

ds
2 = ηµνdx

µ
dx

ν − dz
2
, (2.1)

where ηµν is the metric for 4D Minkowski space. The extra dimensional coordinate z is
compactified on an S1/Z2 orbifold, and the z coordinate is taken to range from z = [0, L].
All SM fields are taken to propagate in the bulk, and the Lagrangian is constructed to
obey a discrete symmetry known as KK-number, the remnant of 5D translation invariance
which is broken by the presence of the branes at z = 0, L [?]. KK-number is not conserved
at the quantum level, and is broken by quantum effects to a residual Z2 symmetry known
as KK-parity [?]. At the Lagrangian level, KK-parity forbids bulk Dirac masses for the
fermions, requires that brane localized interactions be identical on the branes at z = 0, L,
and that boundary conditions for bulk fields are chosen to be the same on either brane.
Boundary conditions for the fermions and gauge fields are chosen such that the fermion
and gauge boson zero mode spectrum reproduces the that of the Standard Model. The
bulk Higgs sector then gives mass to these modes in the usual way.

We slightly extend UED to incorporate a new bulk gauge symmetry. This gauge
symmetry is chosen to be chiral in the zero mode spectrum, and the charges are chosen to
match those of a standard Peccei-Quinn global symmetry. In order to do this consistently
we must also have up and down-type Higgs doublets, since the SM with one Higgs does
not have any such symmetry, even at the global level:

Hu Hd Q ū d̄ L ē

Y 1/2 −1/2 1/6 −2/3 1/3 −1/2 1
PQ 1 1 −1/2 −1/2 −1/2 −1/2 −1/2

(2.2)

Note that a µ term, µH
T
u (iτ2)Hd, is forbidden with these charge assignments. On the

boundaries, we fix the 4D components of the PQ gauge field, BM to zero: Bµ|z=0,L = 0,
as is consistent with the action principle [?]. In the absence of other symmetry breaking
effects, this leads to a single physical zero mode for the 5-component of the gauge field,
B5 []. As is normally the case, the remaining KK tower of B5 modes can be gauged out of
the spectrum as they are Goldstone bosons eaten by the KK tower of massive Bµ fields. We
discuss this in further detail in Section ??, where we also take into account bulk breaking
of the gauge symmetry due to the Higgs vacuum expectation values. This gauge theory as
constructed is anomalous, and is thus potentially not viable. We show in Section ?? that
all such anomalies are global rather than gauge anomalies, as they arise only on the branes,
and the theory is thus self-consistent.

1

z is extra dimensional coordinate

compactified on an S1/Z2 orbifold
�

z =
L

π
θ

�
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obey a discrete symmetry known as KK-number, the remnant of 5D translation invariance
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bulk Higgs sector then gives mass to these modes in the usual way.
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boundaries, we fix the 4D components of the PQ gauge field, BM to zero: Bµ|z=0,L = 0,
as is consistent with the action principle [?]. In the absence of other symmetry breaking
effects, this leads to a single physical zero mode for the 5-component of the gauge field,
B5 []. As is normally the case, the remaining KK tower of B5 modes can be gauged out of
the spectrum as they are Goldstone bosons eaten by the KK tower of massive Bµ fields. We
discuss this in further detail in Section ??, where we also take into account bulk breaking
of the gauge symmetry due to the Higgs vacuum expectation values. This gauge theory as
constructed is anomalous, and is thus potentially not viable. We show in Section ?? that
all such anomalies are global rather than gauge anomalies, as they arise only on the branes,
and the theory is thus self-consistent.

1

fixed points at

identify z with -z

orbifold 

e.g. Hall, Nomura 2001 
Kawamura 2001



5D Fermions
Fields may be even or odd under projection, but 

surviving operators are all even

Consistent fixed point boundary conditions:

LDirac = Ψ̄L(x, z) (i �∂ − γ5∂z)ΨL + Ψ̄R(x, z) (i �∂ − γ5∂z)ΨR

ΨL,R(x, z) = ±γ5ΨL,R(x,−z)

contain LH/RH zero mode in KK spectrumΨL,R

mass terms forbidden: Ψ̄LΨL(z) = −Ψ̄LΨL(−z)



A Flat 5D NJL Model

In low energy 4D effective theory, operator is chirally symmetric NJL

under orbifold identification:

scalar H is even under orbifold parity

Ψ̄LΨR(z) = +Ψ̄LΨR(−z)

task is to compute quantum corrections in this 5D 
Yukawa theory and identify the ground state

H =
g

Λ5/2
Ψ̄RΨL

= LDirac − Λ2
0|H|2 + g√

Λ0
HΨ̄LΨR + h.c.

L = LDirac +
g2

Λ3
0

Ψ̄LΨRΨ̄RΨL



Choosing a regulator
Orbifolding breaks 5D Lorentz invariance 

this is primarily an IR effect

Want a regulator which respects it in order to trust results

Dim. reg. + zeta function

sum over all KK modes, integrate over all 4D momenta

automatically subtracts all power law dependence on cutoff

5D implementation of hard cutoff



5D Hard Cutoff
Want to integrate/sum over sphere of Euclidean 5-

momentum

Can replace loop sums by integral (Euler-MacLaurin):
b�

n=a

f(n) =

� b

a
dnf(n) +

f(a) + f(b)

2
+

∞�

k=1

B2k

2k!

�
f (2k−1)(b)− f (2k−1)(a)

�

(k0E)
2 + (k1E)

2 + (k2E)
2 + (k3E)

2 + (k5E)
2 ≤ Λ2

�
1

2L

��

k5

�

k2
E≤Λ2−k2

5

d4kE
(2π)4

I(kE , k5) ∼
�

K2
E≤Λ2

d5KE

(2π)5
I(kE , k5)

Correctly captures divergence structure - matches 
continuum calculation



Fermion Propagators

conserves 5D momentum (up to a sign):

i

2

�
δp5, p�

5
± δ−p5, p�

5

p2 − p25

�

p5 quantized: p5 =
nπ

L

For a 5D scalar with even/odd orbifold assignments:

D(p2; p5, p
�
5) =

orbifold breaks translation invariance 

In flat space (no warping):

case it is unclear how one would implement a regularization procedure which respects local

5D lorentz invariance.

3.1 Quantum corrections with vanishing fermion bulk masses

In the case that the bulk fermion masses vanish, the fermion propagators are not difficult

to compute. The Yukawa theory under consideration is then similar to the one examined

in [18], but with slightly different orbifold assignments and field content. In this section we

utilize the notation of these authors. In particular, a derivation of the fermion propagators

can be found in Section 2 of that publication.

In 5D momentum space, the fermion propagators are given by:

S(L,R)
F (p; p5, p

�
5) = (2L)

i

2

�
δp5,p�5

�p+ iγ5p5
±

δ−p5,p�5

�p+ iγ5p5
γ5

�
(10)

where the + is for a 5D fermion in which a left-handed zero mode survives the orbifold

projection, and the − is for a 5D fermion which contains a right-handed zero mode in the

spectrum. 1 The 5D momentum is given by p5 =
nπ
L , where n ranges over all integers. The

fermion propagator conserves the magnitude of the 5D momentum, but only up to a sign.

The breaking of 5D translation invariance is a manifestation of the reflection conditions at

the orbifold fixed points. The remaining conservation of |p5| is known as conservation of

KK-number, a tree level symmetry of the theory that is present when bulk masses for the

fields are vanishing.

The terms we are interested in computing are the scalar two- and four-point functions.

Since interaction terms in extra dimensional theories are all non-renormalizable, higher

dimensional operators will be generated as well. For the purposes of illustration in this toy

model, we ignore these contributions. One could in principle arrange for these terms to be

removed via fine tuning of the coefficients of such operators against the quantum corrections

to them. This tuning should then presumably be derived as a natural consequence of a UV

complete model.

The scalar 2-point function

In the fermion bubble approximation, the scalar two point function at one loop consists

of the one diagram shown in Figure 1. In the compactified 5D theory, this single diagram

encapsulates the quantum corrections to the bulk kinetic and mass terms. In addition, it

1We have chosen a convention in which the period of the fourier series appears in the kronecker-δ’s of
momentum (2L δp5,k5), and in sums over unconstrained 5D momenta ( 1

2L

�
k5
). This makes it simpler to

compare with the (mostly) standard treatment in non-compact dimensions where the transformation to
momentum space comes with a 1

2π normalization. The dictionary between the compact and non-compact
5D theory consists of replacing sums with integrals, kronecker-δ’s with δ-functions, and all factors of 2L
with 2π.

6

(2L)



Scalar Self Energy

H H

ΨL

ΨR

k

k + p

k�5

p, p5 p, p�5k�5 + p�5k5 + p5

k5

Figure 1: The 5D scalar two point function, where the scalar couples to two flavors of 5D
Dirac fields, each of which contains either LH and RH zero mode in the KK-mode spectrum.

Zero Bulk Mass

When the fermion bulk mass vanishes, the 5D momentum is conserved up to a sign in the
fermion propagator, which is given by

S(L,R)
F (p; p5, p

�
5) =

i

2

�
δp5,p�5

�p+ iγ5p5
±

δ−p5,p�5

�p+ iγ5p5
γ5

�
, (1)

where the + is for a 5D fermion in which a left-handed zero mode survives the orbifold
projection, and the − is for right-handed zero mode boundary conditions. Note that the
presence of the boundaries implies that 5D momentum is only conserved up to a sign.

The scalar two point function at one loop is given by

−λ2

4

�

k5,k�5

�
ddk

(2π)d
Tr

�
(/k + iγ5k5)(δk5,k�5 − γ5δk5,−k�5

)

k2 − k2
5

·
(/k + /p+ iγ5[k�

5 + p�5])(δk5+p5,k�5+p�5
+ γ5δk5+p5,−k�5−p�5

)

(k + p)2 − (k�
5 + p�5)

2

�
. (2)

where k5 and k�
5 are 5D internal loop momenta, quantized in units of nπ/L.

There are two terms which contribute, proportional to δp5,p�5 , and δp5,−p�5
. All others

vanish due to γ-matrix trace identities. These surviving terms conserve |p5|, and are as-
sociated with quantum corrections to the bulk lagrangian. That is, at the one loop level,
there are no brane localized terms generated.

This is perhaps somewhat surprising at first glance. One might expect that there are,
i.e., brane localized quadratic divergences which renormalize the scalar mass independently
on the branes, vs in the bulk, or at least induced brane localized kinetic terms. The reason
for the absence of such terms at the one-loop level is that 5D translation invariance is not
broken severely enough by the orbifold projection. need more here

2

4 structures from kronecker-delta’s
δp5,p�

5
δp5,−p�

5
δ2k5+p5+p�

5,0
δ2k5+p5−p�

5,0

Bulk terms Brane terms

also contains information about brane localized terms which are quadratic in the scalar
field. This diagram gives information about how to run the scalar sector of the Yukawa
theory from the high scale Λ0 down to low energies. The value for the diagram is

H H

ΨL

ΨR

k

k + p

k�5

p, p5 p, p�5k�5 + p�5k5 + p5

k5

Figure 1: The 5D scalar two point function, where the scalar couples to two flavors of 5D
Dirac fields, each of which contains either LH and RH zero mode in the KK-mode spectrum.

− g2

Λ0

�

k5,k�5

�
ddk

(2π)d
Tr

�
(/k + iγ5k5)(δk5,k�5 − γ5δk5,−k�5

)

k2 − k2
5

·
(/k + /p+ iγ5[k�

5 + p�5])(δk5+p5,k�5+p�5
+ γ5δk5+p5,−k�5−p�5

)

(k + p)2 − (k�
5 + p�5)

2

�
. (11)

Let us first discuss brane localized divergences of the 2-pt diagram. In extra dimen-
sional theories, it is now well known that quantum effects generally violate KK-number
conservation [18, 10, 11]. The presence of brane localized terms can be identified by diver-
gences which do not conserve 5D momenta. Such divergences signal that a counterterm is
necessary, and that the brane term should be included in the tree level action. Expand-
ing the numerator of the diagram and simplifying the kronecker-δ’s, there are in principle
terms proportional to δp5,p�5 , δ−p5,p�5

, δ2k5,−p5−p�5
, and δ2k5,p�5−p�5

. The first two types of terms
correspond to bulk corrections, while the second two correspond to brane localized terms.

Applying the usual Dirac trace identities, the brane localized terms vanish. This
is perhaps somewhat surprising at first glance. One might expect that there are brane
localized quadratic divergences which renormalize the scalar mass independently on the
branes versus in the bulk. One might also expect the generation of brane localized kinetic
terms for the scalar field. The reason for the absence of such terms at the one-loop level is
that 5D translation invariance is not broken severely enough in this process. In fact, there
are a variety of scenarios in which brane localized terms are not generated at the one-loop
level. We discuss this in further detail in Appendix C.

Let us now identify the bulk renormalization terms. We expect a cubically divergent
mass renormalization, and a linear divergence in the 5D kinetic terms. One of the bulk

7
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− g2

Λ0

�

k5,k�5

�
ddk

(2π)d
Tr

�
(/k + iγ5k5)(δk5,k�5 − γ5δk5,−k�5

)

k2 − k2
5

·
(/k + /p+ iγ5[k�

5 + p�5])(δk5+p5,k�5+p�5
+ γ5δk5+p5,−k�5−p�5

)

(k + p)2 − (k�
5 + p�5)

2

�
. (11)
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conservation [18, 10, 11]. The presence of brane localized terms can be identified by diver-
gences which do not conserve 5D momenta. Such divergences signal that a counterterm is
necessary, and that the brane term should be included in the tree level action. Expand-
ing the numerator of the diagram and simplifying the kronecker-δ’s, there are in principle
terms proportional to δp5,p�5 , δ−p5,p�5

, δ2k5,−p5−p�5
, and δ2k5,p�5−p�5

. The first two types of terms
correspond to bulk corrections, while the second two correspond to brane localized terms.

Applying the usual Dirac trace identities, the brane localized terms vanish. This
is perhaps somewhat surprising at first glance. One might expect that there are brane
localized quadratic divergences which renormalize the scalar mass independently on the
branes versus in the bulk. One might also expect the generation of brane localized kinetic
terms for the scalar field. The reason for the absence of such terms at the one-loop level is
that 5D translation invariance is not broken severely enough in this process. In fact, there
are a variety of scenarios in which brane localized terms are not generated at the one-loop
level. We discuss this in further detail in Appendix C.

Let us now identify the bulk renormalization terms. We expect a cubically divergent
mass renormalization, and a linear divergence in the 5D kinetic terms. One of the bulk

7



Bulk Corrections

In 5D L-R Yukawa theory - scalar is KK even 

Coefficients of δp5,p�
5
and δp5,−p�

5
identical

renormalized propagator retains KK parity even form

we have

iΠ(p2, p25) = iΠ(0)− ig2

8Λ(4π)d/2

�π
L

�4−d �
2ζ(4− d) + (µIRL)

d−4
�
Γ(2−d/2)

�
p2 + p25 (2− d)

�
.

(16)
We have regulated the contribution of the zero mode with an IR cutoff, µIR. The two point
function for vanishing external momentum, iΠ(0), is given by:

iΠ(0) = −i
g2

4Λ(4π)d/2

�π
L

�d−2
ζ(2− d)Γ(1− d/2) (17)

Taking the limit as d → 4, we have the final result:

iΠ(p2, p25) =
ig2

4Λ(4π)2

�
2
�π
L

�2
ζ �(−2) + log(2π�IR)

�
p2 − 2p25

��
(18)

Let us point out some aspects of this result: First, this is finite as d → 4. For the
field strength term, the pole in the Γ function is canceled by the sum of the zeta function
and the contribution of the zero mode. That is, the UV divergences created by the zero
mode are canceled by the UV divergences of the tower of KK-modes. Cancelations among
modes occur for the mass term as well. Second, note that the coefficient of the p2 and p25
terms differ in the limit d → 4. These finite terms correspond to non-local contributions
to violations of 5D translation invariance from the presence of the orbifold fixed points.

The finiteness of the result in this regularization scheme is comforting. Since all diver-
gences must be local, the UV structure of the bulk compactified theory should match that
of the uncompactified model. All divergences in uncompact odd dimensions are power-law
and are automatically subtracted using dimensional regularization which only tracks log-
arithmic divergences. So both the compact and uncompact models yield finite results for
the two point function in this regularization scheme.

It is possible to utilize a hard cutoff scheme which respects the local space-time sym-
metries. This is beneficial, since a hard cutoff regularization scheme has a better physical
interpretation in terms of our physical cutoff, Λ0. While the procedure is described in detail
in Appendix ??, in many cases it consists simply of approximating the sum over momenta
by an integral, at which point the integrand is manifestly 5D lorentz invariant, and in-
tegration over a 5-sphere in the loop momentum can be performed in the standard way.
The substitution required is 1

2L

�
k5

→
�

dk5
2π . The two point function in this regularization

scheme is then

iΠ(p2; p5, p
�
5) =

�
δp5,p�5 + δp5,−p�5

� g2L
2Λ0

�
d5k

(2π)5

� 1

0

dx
(l2 − l25)− x(1− x)(p2 − p25) + l5p5(2x− 1)

[(l2 − l25) + x(1− x)(p2 − p25)]
2

,

(19)
and we can now shift the full 5D loop momentum in the usual way, and use a 5D hard
cutoff Λ. The result, as an expansion in P 2 = p2 − p25, is given by

iΠ(p2; p5, p
�
5) = iL

�
δp5,p�5 + δp5,−p�5

� � g2Λ3

18π3Λ0
+

g2Λ

10π3Λ0
P 2

�
≡ L

�
δp5,p�5 + δp5,−p�5

�
i�Π(P 2).

(20)

9
later take Λ = Λ0



Brane Divergences
At one loop, the brane action is unchanged

remnant of 5D translation invariance 
protecting it

cross terms in kroneckers - odd # of γ’s with γ5  

δ2k5+p5+p�
5,0

δ2k5+p5−p�
5,0

terms vanish

also contains information about brane localized terms which are quadratic in the scalar
field. This diagram gives information about how to run the scalar sector of the Yukawa
theory from the high scale Λ0 down to low energies. The value for the diagram is
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k

k + p

k�5

p, p5 p, p�5k�5 + p�5k5 + p5

k5

Figure 1: The 5D scalar two point function, where the scalar couples to two flavors of 5D
Dirac fields, each of which contains either LH and RH zero mode in the KK-mode spectrum.

− g2

Λ0

�
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Let us first discuss brane localized divergences of the 2-pt diagram. In extra dimen-
sional theories, it is now well known that quantum effects generally violate KK-number
conservation [18, 10, 11]. The presence of brane localized terms can be identified by diver-
gences which do not conserve 5D momenta. Such divergences signal that a counterterm is
necessary, and that the brane term should be included in the tree level action. Expand-
ing the numerator of the diagram and simplifying the kronecker-δ’s, there are in principle
terms proportional to δp5,p�5 , δ−p5,p�5

, δ2k5,−p5−p�5
, and δ2k5,p�5−p�5

. The first two types of terms
correspond to bulk corrections, while the second two correspond to brane localized terms.

Applying the usual Dirac trace identities, the brane localized terms vanish. This
is perhaps somewhat surprising at first glance. One might expect that there are brane
localized quadratic divergences which renormalize the scalar mass independently on the
branes versus in the bulk. One might also expect the generation of brane localized kinetic
terms for the scalar field. The reason for the absence of such terms at the one-loop level is
that 5D translation invariance is not broken severely enough in this process. In fact, there
are a variety of scenarios in which brane localized terms are not generated at the one-loop
level. We discuss this in further detail in Appendix C.

Let us now identify the bulk renormalization terms. We expect a cubically divergent
mass renormalization, and a linear divergence in the 5D kinetic terms. One of the bulk
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Softened divergences
Brane localized divergences are proportional to this 
explicit breaking

brane mass correction is linearly divergent
performed using mass insertion approximation

present the result utilizing a 5D lorentz invariant hard cutoff. We find

iV4(0; p5, p
�
5, p

��
5, p

���
5 ) =

−ig4Λ

24π3Λ2
0

(2L)
�

±
δ0,p5±p�5±p��5±p���5

. (22)

Where the sum is over all 8 permutations of signs in the kronecker-δ.

To summarize the results of this section, we find that the bulk UV structure of the

theory is as expected, where the running is purely power law. We have shown explicitly

the cancellation of log divergences in the dimensional regularization scheme.

The one-loop brane localized divergence structure is different from naive expectations.

Despite the fact that brane localized terms seem to be forced by breaking translation

invariance via the orbifold identification, they are not generated at one loop. As we discuss

in Appendix C, this is due to the interplay of the left- and right-handed components of 5D

fermions.

3.2 Quantum corrections with fermion bulk masses

The arguments that prevent against the generation of brane localized terms fail when

fermion mass terms are added into the theory. Under the orbifolding procedure, such

masses must be odd under the projection since the fermion bilinears Ψ̄Ψ are odd. These

masses could arise from a scalar domain wall with a very narrow width where the domain

wall is trapped at the orbifold fixed point [?]. As such fermion masses explicitly break 5D

translation invariance at the orbifold fixed points, it is expected that they will generate

brane localized terms.

In this section, we calculate the quantum corrections in the presence of fermion bulk

masses. As the mass terms do not conserve even the magnitude of the 5D momenta, the

explicit form of the propagators in momentum space is rather complicated to compute.

However, we can accurately capture the divergence structure of the theory by treating the

5D mass term as a perturbation of the massless scenario. With this procedure, we calculate

corrections to the two- and four-point functions.

We take the fermion masses to have the profiles given in Eq. (5). To obtain the

Feynman rule in momentum space, we compute the Fourier series of the fermion mass

terms in the action, and read off the interaction vertex. Since the mass term is non-

constant in z, its Fourier series is non-trivial. That is, the mass term acts as a source for

5D momentum which can be injected into a given diagram. The Feynman rule is:

xL(R) L(R)

p5 p�5
=

4mL(R)

p�5 − p5
δoddp5,p�

5

, (23)

where

δoddp5,p�5
≡

�
1 p5 + p�5 odd multiple of π/L
0 p5 + p�5 even multiple of π/L.

(24)
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We take the fermion masses to have the profiles given in Eq. (5). To obtain the

Feynman rule in momentum space, we compute the Fourier series of the fermion mass

terms in the action, and read off the interaction vertex. Since the mass term is non-

constant in z, its Fourier series is non-trivial. That is, the mass term acts as a source for
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This is the familiar Fourier transform of the square wave function, with period 2L.

The corrections to the scalar 2-point function arise from two diagrams, one with a

mass insertion on the fermion with a LH zero mode, the other with an insertion on the RH

zero mode.

H H

p, p5 p, p�5

xL L

R

H H

p, p5 p, p�5

x RR

L

+

. (25)

These contributions to the 2-point function are linearly divergent:

iΠM(0; p5, p
�
5) = i

g
2Λ

3π3Λ0
(mL −mR) δ

odd
p5,p

�
5
+ finite terms (26)

Perhaps we should include the double mass insertion diagrams for com-
pleteness - these are not difficult with the mathematica code

Adding a mass insertion diagram to the 4-point function only contributes finite terms.

4 The quantum effective action

The 2- and 4-point diagrams we have calculated can now be incorporated into a quantum

effective action that is valid at a low scale µ. Generically, we can express this action as

follows:

Seffective =

�
d
4
x

�
L

−L

dz

�
Ψ̄L(i�∂ −ML(z))ΨL + Ψ̄R(i�∂ −MR(z))ΨR +

g√
Λ0

HΨ̄LΨR + h.c.

+ ZH∂MH∂M
H

† −
�
Λ2

0 + δM2
�
|H|2 − λ

4Λ0
|H|4

�

−
�

d
4
x m

2
0 |H(z = 0)|2 +m

2
L
|H(z = L)|2.

(27)

To map between our correlation functions and the terms in this effective action, we first note
that each amplitude can be written in terms of projection operators Ep5,p

�
5
≡ L

�
δp5,p�5 + δp5,−p

�
5

�

acting on “sub-amplitudes.” The projection operators are the expression for dynamical ex-

ternal scalar legs when the scalar is even under the orbifolding procedure (H(z) = H(−z)).

The sub-amplitudes represent Feynman rules arising from bulk and brane localized terms

in the effective 5D action.
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where the sum over N spans all integers. The Fourier transform thus corresponds to

opposite sign delta-functions on the two branes, δodd
q5,q

�
5
→ 1

2 [δ(z)− δ(z − L)]. The brane

localized mass terms are then m2
0 = −m2

L
= −�ΠM/2. Finally, the four point function can

be expressed as

iV4(0; p5, p
�
5, p

��
5, p

���
5 ) = i

�V4

8

�

±
δ0,p5±p

�
5±p

��
5±p

���
5

= i

�
1

2L

�4 �

q5,q
�
5,q

��
5 ,q

���
5

Ep5,q5Ep
�
5,q

�
5
Ep

��
5 ,q

��
5
Ep

���
5 ,q

���
5
�V4 δ0,q5+q

�
5+q

��
5+q

���
5
. (31)

and we make the identification �V4 =
λ
Λ0
.

In summary, the effective action expressed as a function of the UV parameters is given

in Eq. ??, where the coefficients are given by

ZH =
Ncg2

10π3

Λ

Λ0

δM2
= −Ncg2

18π3

Λ3

Λ0

λ =
Ncg4

3π3

Λ

Λ0

m2
0 = −m2

L
=

Ncg2

6π3

Λ

Λ0
(mR −mL) (32)

We now associate the regulator cutoff Λ with the physical scale Λ0. By defining the coupling

constants such that they are scaleless, with the physical scale explicitly appearing in the

interaction terms, the quantum corrections (with the exception of the bulk mass term) are

seen to all be independent of the scale Λ0.

It is interesting that the scalar mass
2
receives brane localized contributions of opposite

sign on either brane. This is a rather severe violation of KK-parity. If this parity were

preserved, the two brane localized terms are expected to be identical. However, the fermion

mass terms explicitly violate KK-parity. Quantum effects transmit this breaking of KK-

parity to the scalar sector in the form of these linear divergences.

These opposite sign one-loop brane localized terms vanish, however, when the fermion

masses are taken to be identical. In this scenario, for positive bulk masses, the LH zero

mode is localized on the z = 0 brane, whereas the RH zero mode is localized on the z = L
brane. If the masses are equal, then the profiles are mirror images of each other, and an

“accidental” KK-parity is introduced.

At this point, we now choose a convenient normalization for the 5D fields. We choose
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Opposite sign mass on either brane
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masses. As the mass terms do not conserve even the magnitude of the 5D momenta, the

explicit form of the propagators in momentum space is rather complicated to compute.

However, we can accurately capture the divergence structure of the theory by treating the

5D mass term as a perturbation of the massless scenario. With this procedure, we calculate

corrections to the two- and four-point functions.

We take the fermion masses to have the profiles given in Eq. (??). To obtain the
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terms in the action, and read off the interaction vertex. Since the mass term is non-
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mass insertion on the fermion with a LH zero mode, the other with an insertion on the RH

zero mode.
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These contributions to the 2-point function are linearly divergent:
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Quartic Coupling

again, divergent brane localized terms vanish due to trace 
structure - mass insertions generate only finite corrections

terms differ in the limit d → 4. These finite terms correspond to non-local contributions
to violations of 5D translation invariance from the presence of the orbifold fixed points.

The finiteness of the result in this regularization scheme is comforting. Since all diver-
gences must be local, the UV structure of the bulk compactified theory should match that
of the uncompactified model. All divergences in uncompact odd dimensions are power-law
and are automatically subtracted using dimensional regularization which only tracks log-
arithmic divergences. So both the compact and uncompact models yield finite results for
the two point function in this regularization scheme.

It is possible to utilize a hard cutoff scheme which respects the local space-time sym-
metries. This is beneficial, since a hard cutoff regularization scheme has a better physical
interpretation in terms of our physical cutoff, Λ0. While the procedure is described in detail
in Appendix ??, in many cases it consists simply of approximating the sum over momenta
by an integral, at which point the integrand is manifestly 5D lorentz invariant, and in-
tegration over a 5-sphere in the loop momentum can be performed in the standard way.
The substitution required is 1

2L

�
k5

→
�

dk5
2π . The two point function in this regularization

scheme is then

iΠ(p2; p5, p
�
5) =

�
δp5,p�5 + δp5,−p�5

� g2L
2Λ0

�
d5k

(2π)5

� 1

0

dx
(l2 − l25)− x(1− x)(p2 − p25) + l5p5(2x− 1)

[(l2 − l25) + x(1− x)(p2 − p25)]
2

,

(19)
and we can now shift the full 5D loop momentum in the usual way, and use a 5D hard
cutoff Λ. The result, as an expansion in P 2 = p2 − p25, is given by

iΠ(p2; p5, p
�
5) = iL

�
δp5,p�5 + δp5,−p�5

� � g2Λ3

18π3Λ0
+

g2Λ

10π3Λ0
P 2

�
≡ L

�
δp5,p�5 + δp5,−p�5

�
i�Π(P 2).

(20)
We have kept Λ0 separate from the regulator cutoff in this expression to highlight the
sensitivity to an arbitrary UV scale, although we take them to be equal in our expression
for the effective action. Implied in Eq. (??) is an IR scale, µ � Λ, which can be put into
the effective action with the replacements Λn → Λn − µn.

The scalar 4-point function

The quartic coupling also renormalizes, although we again find that all divergences are
confined to the bulk. The relevant Feynman diagrams are shown in Figure ??, and they
evaluate to:

iV4(0; p5, p
�
5, p

��
5, p

���
5 ) = − g4

Λ2
0

�

k5,k�5,
k��5 ,k

���
5

�
d4k

(2π)4
Tr

�
SR
F (k; k5, k

���
5 + p���5 )S

L
F (k; k

���
5 , k

��
5 + p��5)

× SR
F (k; k

��
5 , k

�
5 + p�5)S

L
F (k; k

���
5 , k

��
5 + p��5)

�
.
(21)
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Figure 2: The 5D scalar four point function. We have taken all external 4-momenta to
zero.

Terms which contribute to bulk running of the quartic arise from an even number of inser-
tions of the 5D momentum conserving kronecker delta’s while terms which contribute to
brane running of the quartic involve an odd number of these. The potential brane terms
each involve (at leading order in loop momenta) the trace of 4 identical Dirac matrices, /k,
with a γ5, and therefore vanish.

Performing the calculation using dimensional regularization again produces a finite
result, with KK-modes canceling against the contribution of the zero modes. We only
present the result utilizing a 5D lorentz invariant hard cutoff. We find

iV4(0; p5, p
�
5, p

��
5, p

���
5 ) =

−ig4Λ

24π3Λ2
0

(2L)
�

±
δ0,p5±p�5±p��5±p���5

. (22)

Where the sum is over all 8 permutations of signs in the kronecker-δ.

To summarize the results of this section, we find that the bulk UV structure of the
theory is as expected, where the running is purely power law. We have shown explicitly
the cancellation of log divergences in the dimensional regularization scheme.

The one-loop brane localized divergence structure is different from naive expectations.
Despite the fact that brane localized terms seem to be forced by breaking translation
invariance via the orbifold identification, they are not generated at one loop. As we discuss
in Appendix ??, this is due to the interplay of the left- and right-handed components of
5D fermions.
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Terms which contribute to bulk running of the quartic arise from an even number of inser-
tions of the 5D momentum conserving kronecker delta’s while terms which contribute to
brane running of the quartic involve an odd number of these. The potential brane terms
each involve (at leading order in loop momenta) the trace of 4 identical Dirac matrices, /k,
with a γ5, and therefore vanish.

Performing the calculation using dimensional regularization again produces a finite
result, with KK-modes canceling against the contribution of the zero modes. We only
present the result utilizing a 5D lorentz invariant hard cutoff. We find
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Where the sum is over all 8 permutations of signs in the kronecker-δ.

To summarize the results of this section, we find that the bulk UV structure of the
theory is as expected, where the running is purely power law. We have shown explicitly
the cancellation of log divergences in the dimensional regularization scheme.

The one-loop brane localized divergence structure is different from naive expectations.
Despite the fact that brane localized terms seem to be forced by breaking translation
invariance via the orbifold identification, they are not generated at one loop. As we discuss
in Appendix ??, this is due to the interplay of the left- and right-handed components of
5D fermions.
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Bulk term is linearly divergent



5D Effective Theory
a canonical 5D scalar kinetic term, obtained by redefining H → H/

√
ZH :

S =

�
d
4
x

�
L

−L

dz

�
Ψ̄L (i�∂ −ML(z))ΨL + Ψ̄R (i�∂ −MR(z)) tR +

�g√
Λ0

HΨ̄LΨR + h.c.

+∂MH∂M
H

† − �m2|H|2 −
�λ

4Λ0
|H|4

�
+

�
d
4
x
�
�m2

0 |H|2
��
z=0

+ �m2
L
|H|2

��
z=L

�

(33)

The terms in this 5D effective theory are

�g2 = 10π3

Nc

�m2
=

�
10π3

Ncg
2
− 5

9

�
Λ2

0

�λ =
100π3

3Nc

�m2
0 = −�m2

L
=

5

3
(mR −mL). (34)

Above, we have assumed Λ � µ, where Λ is the scale that our original lagrangian with

the 4 fermion operator was defined, and µ is the low scale at which we evaluate our 5D

effective action.

There are also finite non-local contributions that arise from quantum corrections. We

have neglected these, as they are expected to be typically sub-dominant, and do not have

an interpretation as terms which are local in the extra dimensional coordinate.

Again, we note that there are no brane localized quadratic divergences at one loop.

Such terms might have been expected from considerations of the field content. In the

fermion bubble approximation, brane localized terms arise only from diagrams with inser-

tions of the 5D fermion mass, whose profile explicitly violates translation invariance.

In the presence of fermion bulk masses, the conditions under which the chiral symmetry

of the low energy theory is broken are modified. In the absence of the boundary terms, the

scalar bound states condense for a coupling value exceeding g
2
crit = 18π3

/Nc. However, the

brane localized mass terms can drive condensation as well. We explore in the next section

the conditions for generation of a condensate, and the resulting low energy spectrum of the

theory.

5 Scalar Spectrum

We have now shown that the low energy effective theory is one with an additional 5D

composite scalar degree of freedom. The equations of motion and the boundary conditions
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effective action.

There are also finite non-local contributions that arise from quantum corrections. We

have neglected these, as they are expected to be typically sub-dominant, and do not have

an interpretation as terms which are local in the extra dimensional coordinate.

Again, we note that there are no brane localized quadratic divergences at one loop.

Such terms might have been expected from considerations of the field content. In the

fermion bubble approximation, brane localized terms arise only from diagrams with inser-

tions of the 5D fermion mass, whose profile explicitly violates translation invariance.

In the presence of fermion bulk masses, the conditions under which the chiral symmetry

of the low energy theory is broken are modified. In the absence of the boundary terms, the

scalar bound states condense for a coupling value exceeding g
2
crit = 18π3

/Nc. However, the

brane localized mass terms can drive condensation as well. We explore in the next section

the conditions for generation of a condensate, and the resulting low energy spectrum of the

theory.

5 Scalar Spectrum

We have now shown that the low energy effective theory is one with an additional 5D

composite scalar degree of freedom. The equations of motion and the boundary conditions
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Chiral Symmetry Breaking

for this scalar field are derivable from the effective action that we have calculated. These

determine the vacuum and spectrum of the theory.

The 5D scalar Higgs field is equivalent at the high scale to the fermion bilinear

H(z, x) = ψ̄L(z, x)ψR(z, x). With the fermionic orbifold assignments we have made, the

orbifold parity transformation of the composite field can be derived:

H(−z) = ψ̄L(−z)ψR(−z) = (−ψ̄L(−z)γ5)(−γ5ψR(−z)) = ψ̄L(z)ψR(z) = H(z). (35)

The scalar field is thus orbifold even, which means we cannot require, when deriving the

equations of motion for the field H, that the variation itself vanish on the branes. Rather,

the Higgs field senses the brane localized mass terms.

In this model, chiral symmetry breaking can occur in one of two ways. First, the

coupling constant associated with the 4-fermion operator may be sufficiently large that the

bulk mass term is driven negative, destabilizing the origin as a vacuum solution. The bulk

quartic coupling then sets the value for the scalar vacuum expectation value.

The other possibility is that the scalar bulk mass
2
remains positive, but a negative

brane localized mass term destabilizes the field from it’s origin value. In this case, it is still

the bulk quartic coupling that stabilizes the vacuum field solution away from the origin,

since we have shown that no brane localized quartic coupling is induced.

The second solution is more interesting, as it distinguishes the behavior of the compact

5D model from the standard NJL analysis. Unlike the scalar bulk mass, the brane localized

terms are sensitive to the values of the fermion bulk mass terms (and thus the relative

localization of the fermion zero modes). Whether chiral symmetry breaking occurs in the

extra dimensional model is thus a function of the coupling constant g, the high scale Λ0,

the fermion bulk masses mL,R, and the size of the extra dimension, L.

We now consider solutions to the composite scalar equations of motion. In the bulk,

the vacuum equation for �H(z, x)� ≡ v(z)/(2
√
L) is given by:

v
��
(z) = �m2

v(z) +

�λ
8Λ0L

v
3
(z). (36)

This differential equation can be solved in terms of Jacobi elliptic functions. The VEV

solution is given by

v(z) =

�
8Λ0Lκ−

λ
sc

�
|z − z0|

�
κ+

2

���� 1−
κ−

κ+

�
(37)

In order to simplify the presentation, we have introduced the dimensionless quantities

κ± = �m2 ±
�

�m4 −
�λ�m2v20
4Λ0L

. The quantities z0 and v0 are to be solved for by imposing the

boundary conditions. In order for the low energy chiral symmetry to be broken, the vacuum

energy for the scalar field must be minimized at a non-trivial value for v0.
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Solutions are Jacobi Elliptic functions

v0 and z0 are integration constants

Determine by imposing boundary conditions
The only brane localized terms which survive in the large cutoff limit are scalar mass

terms proportional to the difference in bulk fermion masses (see Eq. ??). These mass terms

�m2
0 and �m2

L set the boundary conditions for the scalar VEV equation:

v�(z)

v(z)

����
z=0

=
1

2
�m2

0

v�(z)

v(z)

����
z=L

= −1

2
�m2

L. (38)

We can find the phase boundary analytically by expanding the solution about small

v0. The result is v(z) ≈ v0 sinh(|z − z0|�m), and the boundary conditions are then:

v�(z)

v(z)

����
z=0

= �m coth(|z0|m) =
5

6
(mR −mL)

v�(z)

v(z)

����
z=L

= �m coth(|L− z0|m) =
5

6
(mR −mL). (39)

These are satisfied for z0 → −∞, and for �m =
5
6(mR − mL). We can express this phase

boundary in terms of the original 4-Fermi coupling g, which determines �m in the low energy

theory. The critical coupling is found to be:

g2critical =
18π3

Nc

�
1 +

5

4

(mR −mL)
2

Λ2
0

�−1

. (40)

We now scan the parameter space of the model. For these purposes, we presume that

the fermions are the 5D analogs of the LH 3’rd generation doublet and the RH top quark.

In this case, the scalar field then carries SU(2)L × U(1)Y quantum numbers.

A 4D NJL Model

Here we briefly review the NJL model in which we follow [?]. Below we consider a 2 fermion

species coupled with a 4-fermion operator:

L = iψ̄a
L/∂ψ

a
L + iψ̄a

R/∂ψ
a
R +Gψ̄a

Lψ
a
Rψ̄

b
Rψ

b
L (41)

where a and b are global SU(N) indices. The 4 fermion operator is a Fierz rearrange-

ment for the exchange of a massive gluon with mass Λ:

g2

2

�
ψ̄γµ

λA

2
ψ

�
ηµν

q2 − Λ2

�
ψ̄γν

λA

2
ψ

�
= − g2

8Λ2
ψ̄a
Lψ

a
Rψ̄

b
Rψ

b
L +O

�
1

N

�
(42)

This model is typically viewed as a possible approximation to a strongly coupled theory

which confines at scale Λ. The lagrangian can be rewritten in terms of an auxiliary field H:
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Phase Boundary
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This model is typically viewed as a possible approximation to a strongly coupled theory

which confines at scale Λ. The lagrangian can be rewritten in terms of an auxiliary field H:

16

g

|mL −mR|L

unbroken

MW = 40 GeV

MW = 80 GeV

MW = 160 GeV

L= 1/TeV
Nc=3



Higgs and top mass

1.4 6.9 1.4
3.3 8.5 1.9
4.4 9.5 2.3
1.8 3.6 1.4
3.8 5.6 2.5
4.8 6.6 3

(mR −mL) mR mHiggs

parameters chosen to get correct 
W mass and top mass

in toy model, Higgs mass too large (perturbative unitarity)

Can increase Λ0 L, and Nc to decrease mH



Conclusions
We are exploring a new method of symmetry 
breaking in extra dimensional theories

In flat 5D theories, the NJL prescription carries 
over straightforwardly, with some interesting 
results in the UV structure of brane localized 
terms

brane localized running softer than naive 
estimates - implications for NDA size of 
brane localized terms in ED theories

currently carrying over flat space results to 
warped space - expect better behavior


