A DARK FORCE FOR BARYONS

Ian Shoemaker
BF2OII
October 19th, 201 |

with Michael Graesser and Luca Vecchi

OR:

WHY YOU SHOULD LEARN TO STOP WORRYING AND GAUGE BARYON NUMBER

Ian Shoemaker
BF2OII
October 19th, 2011

with Michael Graesser and Luca Vecchi

Dark matter à la Occam

Dark matter à la Occam

Visible sector $\sim 17 \%$

Dark matter à la Occam

Visible sector $\sim 17 \%$

THE STANDARD MODEL

		ermions		Bosons	
	$\begin{aligned} & U \\ & \text { up } \end{aligned}$	 charm	$\underset{\text { top }}{t}$	\mathcal{P}	
	down	strange			
					\%
			7 tau	$\underset{\text { gluon }}{9}$	
*Yet to be confirmed					

Dark matter à la Occam

lex parsimoniae

Visible sector $\sim 17 \%$

THE STANDARD MODEL

Dark sector $\sim 83 \%$

Dark matter à la Occam

Visible sector $\sim 17 \%$

THE STANDARD MODEL

Dark sector $\sim 83 \%$

The WIMP "miracle"

$\chi \chi \leftrightarrow \bar{f} f$

The WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

$$
\Omega_{D M} h^{2}=0.1\left(\frac{3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\langle\sigma v\rangle}\right)
$$

The WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

$$
\Omega_{D M} h^{2}=0.1\left(\frac{3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\langle\sigma v\rangle}\right)
$$

The WIMP "miracle"
 $$
\chi \chi \leftrightarrow \bar{f} f
$$

$$
\Omega_{D M} h^{2}=0.1\left(\frac{3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\langle\sigma v\rangle}\right)
$$

What do we really know about DM?

What do we really know about DM?

I. Cosmological abundance.

What do we really know about DM?

I. Cosmological abundance.
2. It's stable (or at least very long-lived).

Clue \#I:WMAP

Clue \#I:WMAP

* The amounts of dark and visible matter are comparable. WMAP 7 tells us:

Clue \#I:WMAP

* The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{array}{r}
\Omega_{D M} h^{2}=0.1109 \pm 0.0056 \\
\Omega_{B} h^{2}=0.02258_{-0.00056}^{+0.00057}
\end{array}
$$

Clue \#I:WMAP

* The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{array}{r}
\Omega_{D M} h^{2}=0.1109 \pm 0.0056 \\
\Omega_{B} h^{2}=0.02258_{-0.00056}^{+0.00057}
\end{array}
$$

DMB ratio:
$\frac{\Omega_{D M}}{\Omega_{B}} \approx 5$

Clue \#I:WMAP

- The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{aligned}
\Omega_{D M} h^{2} & =0.1109 \pm 0.0056 \\
\Omega_{B} h^{2} & =0.02258_{-0.00056}^{+0.00057}
\end{aligned}
$$

DMB ratio:
$\frac{\Omega_{D M}}{\Omega_{B}} \approx 5$

- This could be

Clue \#I:WMAP

* The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{aligned}
\Omega_{D M} h^{2} & =0.1109 \pm 0.0056 \\
\Omega_{B} h^{2} & =0.02258_{-0.00056}^{+0.00057}
\end{aligned}
$$

DMB ratio:
$\frac{\Omega_{D M}}{\Omega_{B}} \approx 5$

- This could be
I. A remarkable coincidence.

Clue \#1:WMAP

- The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{aligned}
\Omega_{D M} h^{2} & =0.1109 \pm 0.0056 \\
\Omega_{B} h^{2} & =0.02258_{-0.00056}^{+0.00057}
\end{aligned}
$$

DMB ratio:

$\frac{\Omega_{D M}}{\Omega_{B}} \approx 5$

- This could be
I. A remarkable coincidence.

2. An anthropic selection effect? [Freivogel (2008)]

Clue \#1:WMAP

* The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$
\begin{aligned}
\Omega_{D M} h^{2} & =0.1109 \pm 0.0056 \\
\Omega_{B} h^{2} & =0.02258_{-0.00056}^{+0.00057}
\end{aligned}
$$

DMB ratio:
$\frac{\Omega_{D M}}{\Omega_{B}} \approx 5$

- This could be
I. A remarkable coincidence.

2. An anthropic selection effect? [Freivogel (2008)]
3. An indication of an underlying origin.

What to call these models?

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]

What to call these models?

- Darkogenesis? [J. Shelton, K. Zurek (20|0)]
- Xogensis? [M. Buckley, L. Randall (20|0)]

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (20 10)]

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (20|0)]
- Aidnogenesis? [Blennow, et al. (20 10)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (20|0)]
- Aidnogenesis? [Blennow, et al. (20 10)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (20I I)]

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (20|0)]
- Aidnogenesis? [Blennow, et al. (20 10)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (20I I)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R.Volkas (201 I)]

What to call these models?

- Darkogenesis? [. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (20|0)]
- Aidnogenesis? [Blennow, et al. (20 10)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (20I I)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R.Volkas (20II)]

Clue \#2: BSM physics has a love/hate relationship with the proton

Clue \#2: BSM physics has a love/hate relationship with the proton

- New physics models often predict an intriguing signal...

Clue \#2: BSM physics has a love/hate relationship with the proton

- New physics models often predict an intriguing signal...

Clue \#2: BSM physics has a love/hate relationship with the proton

- New physics models often predict an intriguing signal...

The only problem is...

Super Kamiokande says:

Super Kamiokande says:

The proton is stable.

Super Kamiokande says:

Super Kamiokande says:

Super Kamiokande says:

Super Kamiokande says:

Think globally? Act locally.

* Promote $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$ to a local gauge symmetry.

Think globally? Act locally.

* Promote $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$ to a local gauge symmetry.
- New quarks to cancel anomalies.

Think globally? Act locally.

* Promote $U(I)_{\mathrm{B}}$ to a local gauge symmetry.

- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.

Think globally? Act locally.

* Promote $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$ to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.

Think globally? Act locally.

* Promote $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$ to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.
- Baryogenesis requires a DM asymmetry.

Think globally? Act locally.

* Promote $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$ to a local gauge symmetry.

- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.
- Baryogenesis requires a DM asymmetry.
- Shared gauge interactions with baryons predict novel signatures: monojets and low mass DD.

Gauging baryon number

- Older examples:
- Carone and Murayama 1994; Bailey and Davidson 1995; Aranda and Carone 1998.
- More recently:
- Dulaney, Fileviez-Perez and Wise (2010); Buckley, Fileviez-Perez, Hooper, and Neil (201I).

An anomaly-free example

- New chiral states

	$S U(3)_{C}$	$S U(2)_{W}$	$U(1)_{Y}$	$U(1)_{B}$
Q_{i}^{\prime}	3	2	$+\frac{1}{6}$	$-\frac{1}{N}$
$u_{c i}^{\prime}$	$\overline{3}$	1	$-\frac{2}{3}$	$+\frac{1}{N}$
$d_{c i}^{\prime}$	$\overline{3}$	1	$+\frac{1}{3}$	$+\frac{1}{N}$
L_{i}^{\prime}	1	2	$-\frac{1}{2}$	0
$\nu_{c i}^{\prime}$	1	1	0	0
$e_{c i}^{\prime}$	1	1	+1	0

N dark generations

- Spontaneously break $U(1)_{B}$

S^{+}	1	1	0	$+B(S)$
S^{-}	1	1	0	$-B(S)$

An anomaly-free example

- New chiral states

	$S U(3)_{C}$	$S U(2)_{W}$	$U(1)_{Y}$	$U(1)_{B}$
Q_{i}^{\prime}	3	2	$+\frac{1}{6}$	$-\frac{1}{N}$
$u_{c i}^{\prime}$	$\overline{3}$	1	$-\frac{2}{3}$	$+\frac{1}{N}$
$d_{c i}^{\prime}$	$\overline{3}$	1	$+\frac{1}{3}$	$+\frac{1}{N}$
L_{i}^{\prime}	1	2	$-\frac{1}{2}$	0
$\nu_{c i}^{\prime}$	1	1	0	0
$e_{c i}^{\prime}$	1	1	+1	0

N dark generations

- Spontaneously break $U(1)_{B}$

S^{+}	1	1	0	$+B(S)$
S^{-}	1	1	0	$-B(S)$

Baryogenesis implies a DM asymmetry

Baryogenesis implies a DM asymmetry

- The only global symmetry is a non-anomalous $U(1)_{D}$:

Baryogenesis implies a DM asymmetry

- The only global symmetry is a non-anomalous $U(1)_{D}$:

$$
D=B_{q}+B_{q^{\prime}}
$$

Baryogenesis implies a DM asymmetry

- The only global symmetry is a non-anomalous $U(1)_{D}$:

$$
\begin{gathered}
D=B_{q}+B_{q^{\prime}} \\
n_{B} \neq n_{\bar{B}} \Rightarrow n_{X} \neq n_{\bar{X}}
\end{gathered}
$$

Baryogenesis implies a DM asymmetry

- The only global symmetry is a non-anomalous $U(1)_{\mathrm{D}}$:

$$
\begin{gathered}
D=B_{q}+B_{q^{\prime}} \\
n_{B} \neq n_{\bar{B}} \Rightarrow n_{X} \neq n_{\bar{X}}
\end{gathered}
$$

- Unlike conventional ADM, the asymmetries are generated simultaneously.

Baryogenesis implies a DM asymmetry

- The only global symmetry is a non-anomalous $U(I)_{D}$:

$$
\begin{gathered}
D=B_{q}+B_{q^{\prime}} \\
n_{B} \neq n_{\bar{B}} \Rightarrow n_{X} \neq n_{\bar{X}}
\end{gathered}
$$

- Unlike conventional ADM, the asymmetries are generated simultaneously.
- Recent work by: Bell, Petraki, IMS, Volkas [I I 05.3730].

DIRECT DETECTION BOUNDS

DIRECT DETECTION BOUNDS

annihilation physics

$$
\begin{gathered}
\mathfrak{\imath} \\
\text { DM-quark } \\
\text { scattering }
\end{gathered}
$$

RECOIL SPECTRUM

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho_{\odot}}{m_{X}} \int_{|\vec{v}|>v_{m i n}} d^{3} v v f\left(\vec{v}, \vec{v}_{\oplus}\right) \frac{d \sigma}{d E_{R}}
$$

RECOIL SPECTRUM

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho_{\odot}}{m_{X}} \int_{|\vec{v}|>v_{m i n}} d^{3} v v f\left(\vec{v}, \vec{v}_{\oplus}\right) \frac{d \sigma}{d E_{R}}
$$

RECOIL SPECTRUM

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho_{\odot}}{m_{X}} \int_{|\vec{v}|>v_{m i n}} d^{3} v v f\left(\vec{v}, \vec{v}_{\oplus}\right) \frac{d \sigma}{d E_{R}}
$$

particle physics

- Velocity distribution must be consistent with NFW:

RECOIL SPECTRUM

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho_{\odot}}{m_{X}} \int_{|\vec{v}|>v_{m i n}} d^{3} v v f\left(\vec{v}, \vec{v}_{\oplus}\right) \frac{d \sigma}{d E_{R}}
$$

- Velocity distribution must be consistent with NFW:

$$
f(v) \propto\left[\exp \left(\frac{v_{e s c}^{2}-v^{2}}{k v_{0}^{2}}\right)-1\right]^{k}
$$

[Lisanti, Strigari, Wacker, Wechsler (20 10)]

RECOIL SPECTRUM

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho_{\odot}}{m_{X}} \int_{|\vec{v}|>v_{m i n}} d^{3} v v f\left(\vec{v}, \vec{v}_{\oplus}\right) \frac{d \sigma}{d E_{R}}
$$

- Velocity distribution must be consistent with NFW:

$$
f(v) \propto\left[\exp \left(\frac{v_{\text {vesc }}^{2}-v^{2}}{k v_{0}^{2}}\right)-1\right]^{k}
$$

[Lisanti, Strigari, Wacker, Wechsler (20 0)]

High-velocity tail is important for light DM.

RECOIL SPECTRUM

VECTOR CASE:

$$
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{2 \pi v^{2}}\left(\frac{q_{V} g_{B}^{2}}{m_{B}^{2}}\right)^{2} F^{2}\left(E_{R}\right)
$$

RECOIL SPECTRUM

VECTOR CASE:

$$
\begin{gathered}
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{2 \pi v^{2}}\left(\frac{q_{V} g_{B}^{2}}{m_{B}^{2}}\right)^{2} F^{2}\left(E_{R}\right) \\
\text { DD imposes: } \\
m_{X} \lesssim \text { few } \mathrm{GeV}
\end{gathered}
$$

RECOIL SPECTRUM

VECTOR CASE:

$$
\begin{gathered}
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{2 \pi v^{2}}\left(\frac{q_{V} g_{B}^{2}}{m_{B}^{2}}\right)^{2} F^{2}\left(E_{R}\right) \\
\text { DD imposes: } \\
m_{X} \lesssim \text { few GeV }
\end{gathered}
$$

AXIAL CASE:

$$
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{8 \pi v^{2}}\left(\frac{q_{A} g_{B}^{2}}{m_{B}^{2}}\right)^{2}\left[A v^{2}+B q^{2}\right] F^{2}\left(E_{R}\right)
$$

RECOIL SPECTRUM

VECTOR CASE:

$$
\begin{gathered}
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{2 \pi v^{2}}\left(\frac{q_{V} g_{B}^{2}}{m_{B}^{2}}\right)^{2} F^{2}\left(E_{R}\right) \\
\text { DD imposes: } \\
m_{X} \lesssim \text { few GeV }
\end{gathered}
$$

AXIAL CASE:

$$
\begin{gathered}
\frac{d \sigma}{d E_{R}}=\frac{m_{N} A^{2}}{8 \pi v^{2}}\left(\frac{q_{A} g_{B}^{2}}{m_{B}^{2}}\right)^{2}\left[A v^{2}+B q^{2}\right] F^{2}\left(E_{R}\right) \\
\text { DD imposes: } \\
\text { no bound }
\end{gathered}
$$

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20 I 0); Bai, Fox, Harnik (20 I 0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20|0); Bai, Fox, Harnik (20|0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20|0); Bai, Fox, Harnik (20|0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20|0); Bai, Fox, Harnik (20|0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20 I 0); Bai, Fox, Harnik (20 I 0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20 I 0); Bai, Fox, Harnik (20 I 0)].

Monojets at the Tevatron

- For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (20|0); Bai, Fox, Harnik (20 I0)].

$$
p \bar{p} \rightarrow \not \oiint_{T}+j
$$

See Luca's talk.

Combined constraints:

axial case

$$
D^{\mu} X=\partial^{\mu} X+i g_{B}\left(q_{V}^{0}+q_{A} \gamma^{5}\right) Z_{B}^{\mu} X
$$

Combined constraints:

axial case

$$
D^{\mu} X=\partial^{\mu} X+i g_{B}\left(q_{V}^{0}+q_{A} \gamma^{5}\right) Z_{B}^{\mu} X
$$

cONCLUSIONS

- Gauging baryon number saves the proton + automatic DM candidate charged under baryonic force.
- Simultaneous generation of dark and visible asymmetries.
- Consistent with bounds from B-factories, LEP, mono-jet Tevatron searches, and direct detection for:
- GeV-scale DM with a GeV-scale mediator.
- LHC and direct detection will probe much of the remaining parameter space.

EXTRAS

Absence of stable colored particles

- Exotic quarks must decay...

Absence of stable colored particles

- Exotic quarks must decay...

Introduce: $\quad X^{ \pm} \sim\left(1,1,0, \pm\left(\frac{2}{3}-\frac{1}{N}\right)\right)$

Absence of stable colored particles

- Exotic quarks must decay...

Introduce: $\quad X^{ \pm} \sim\left(1,1,0, \pm\left(\frac{2}{3}-\frac{1}{N}\right)\right)$

$$
\mathcal{L} \supset \frac{u_{c} d_{c} d_{c}^{\prime} X}{\Lambda}
$$

Absence of stable colored particles

- Exotic quarks must decay...

Introduce: $\quad X^{ \pm} \sim\left(1,1,0, \pm\left(\frac{2}{3}-\frac{1}{N}\right)\right)$

$$
\mathcal{L} \supset \frac{u_{c} d_{c} d_{c}^{\prime} X}{\Lambda} \quad \overline{q^{\prime}} \rightarrow q q X
$$

Absence of stable colored particles

- Exotic quarks must decay...

Introduce: $\quad X^{ \pm} \sim\left(1,1,0, \pm\left(\frac{2}{3}-\frac{1}{N}\right)\right)$

$$
\mathcal{L} \supset \frac{u_{c} d_{c} d_{c}^{\prime} X}{\Lambda} \quad \overline{q^{\prime}} \rightarrow q q X
$$

Decay operator \leftrightarrow asymmetry transfer operator

