A DARK FORCE FOR BARYONS

lan Shoemaker **BF2011**October 19th, 2011

with Michael Graesser and Luca Vecchi

OR:

WHY YOU SHOULD LEARN TO STOP WORRYING AND GAUGE BARYON NUMBER

Ian Shoemaker

BF2011

October 19th, 2011

with Michael Graesser and Luca Vecchi

Visible sector $\sim 17\%$

Visible sector $\sim 17\%$

lex parsimoniae

lex parsimoniae

Visible sector $\sim 17\%$

THE STANDARD MODEL Fermions Bosons charm top photon bottom Z boson strange Leptons W boson neutrino neutrino neutrino gluon electron Higgs boson *Yet to be confirmed Source: AAAS Dark sector $\sim 83\%$

lex parsimoniae

Visible sector $\sim 17\%$

THE STANDARD MODEL Fermions Bosons charm top photon bottom Z boson strange W boson Leptons neutrino neutrino neutrino gluon electron Higgs boson *Yet to be confirmed Source: AAAS Dark sector $\sim 83\%$

$$\chi\chi\leftrightarrow \bar{f}f$$

$$\chi\chi\leftrightarrow \bar{f}f$$

$$\Omega_{DM}h^2 = 0.1 \left(\frac{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle} \right)$$

$$\chi\chi\leftrightarrow \bar{f}f$$

$$\Omega_{DM}h^2 = 0.1 \left(\frac{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle} \right)$$

$$\chi\chi\leftrightarrow \bar{f}f$$

$$\Omega_{DM}h^2 = 0.1 \left(\frac{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle} \right)$$

What do we really know about DM?

What do we really know about DM?

I. Cosmological abundance.

What do we really know about DM?

- I. Cosmological abundance.
- 2. It's stable (or at least very long-lived).

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

$$\Omega_B h^2 = 0.02258^{+0.00057}_{-0.00056}$$

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

$$\Omega_B h^2 = 0.02258^{+0.00057}_{-0.00056}$$

DMB ratio: $\frac{\Omega_{DM}}{\Omega_{B}} \approx 5$

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

$$\Omega_{B}h^2 = 0.02258^{+0.00057}_{-0.00056}$$

■ This could be

DMB ratio: $\frac{\Omega_{DM}}{\Omega_{B}} \approx 5$

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

$$\Omega_{B}h^2 = 0.02258^{+0.00057}_{-0.00056}$$

DMB ratio:

$$\frac{\Omega_{DM}}{\Omega_B} \approx 5$$

- This could be
 - I. A remarkable coincidence.

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

$$\Omega_B h^2 = 0.02258^{+0.00057}_{-0.00056}$$

DMB ratio:

$$\frac{\Omega_{DM}}{\Omega_B} \approx 5$$

- This could be
 - I. A remarkable coincidence.
 - 2. An anthropic selection effect? [Freivogel (2008)]

■ The amounts of dark and visible matter are comparable. WMAP 7 tells us:

$$\Omega_{DM}h^2 = 0.1109 \pm 0.0056$$

 $\Omega_{B}h^2 = 0.02258^{+0.00057}_{-0.00056}$

DMB ratio: Ω_{DM}

$$\frac{\Omega_{DM}}{\Omega_B} \approx 5$$

- This could be
 - I. A remarkable coincidence.
 - 2. An anthropic selection effect? [Freivogel (2008)]
 - 3. An indication of an underlying origin.

Darkogenesis? [J. Shelton, K. Zurek (2010)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (2011)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (2011)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R. Volkas (2011)]

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (2011)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R. Volkas (2011)]

New physics models often predict an intriguing signal...

New physics models often predict an intriguing signal...

New physics models often predict an intriguing signal...

The only problem is...

Super Kamiokande says:

Super Kamiokande says:

$$\mathcal{L}_{eff} \subset \frac{QQQL}{\Lambda^2}$$

Super Kamiokande says:

$$\mathcal{L}_{eff} \subset \frac{QQQL}{\Lambda^2}$$

$$\tau_p > 10^{33} yr$$

Super Kamiokande says:

$$\mathcal{L}_{eff} \subset \frac{QQQL}{\Lambda^2}$$

$$\tau_p > 10^{33} yr$$
 $\Lambda > 10^{15} \text{GeV!}$

Super Kamiokande says:

$$\mathcal{L}_{eff} \subset \frac{QQQL}{\Lambda^2}$$

$$\tau_p > 10^{33} yr$$
 $\Lambda > 10^{15} \text{GeV!}$

Baryon number is an **unreasonably** good symmetry

*Promote U(I)_B to a local gauge symmetry.

- *Promote U(I)_B to a local gauge symmetry.
- New quarks to cancel anomalies.

- *Promote U(I)_B to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.

- *Promote U(I)_B to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.

- *Promote U(I)_B to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.
- Baryogenesis requires a DM asymmetry.

- *Promote U(I)_B to a local gauge symmetry.
- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.
- Baryogenesis requires a DM asymmetry.
- Shared gauge interactions with baryons predict novel signatures: monojets and low mass DD.

Gauging baryon number

- Older examples:
 - Carone and Murayama 1994; Bailey and Davidson 1995; Aranda and Carone 1998.
- More recently:
 - Dulaney, Fileviez-Perez and Wise (2010);
 Buckley, Fileviez-Perez, Hooper, and Neil (2011).

An anomaly-free example

New chiral states

	$SU(3)_C$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$oxed{Q_i'}$	3	2	$+\frac{1}{6}$	$-\frac{1}{N}$
u_{ci}'	3	1	$-\frac{2}{3}$	$+\frac{1}{N}$
d_{ci}'	$\bar{3}$	1	$+\frac{1}{3}$	$+\frac{1}{N}$
$oxedsymbol{L_i'}$	1	2	$-\frac{1}{2}$	0
$ u_{ci}' $	1	1	0	0
e_{ci}^{\prime}	1	1	+1	0

N dark generations

• Spontaneously break $U(1)_B$

S^+	1	1	0	+B(S)
S^-	1	1	0	-B(S)

An anomaly-free example

New chiral states

	$SU(3)_C$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$oxed{Q_i'}$	3	2	$+\frac{1}{6}$	$-\frac{1}{N}$
u_{ci}'	3	1	$-\frac{2}{3}$	$+\frac{1}{N}$
d_{ci}'	$\bar{3}$	1	$+\frac{1}{3}$	$+\frac{1}{N}$
$oxedsymbol{L_i'}$	1	2	$-\frac{1}{2}$	0
$ u_{ci}' $	1	1	0	0
e_{ci}^{\prime}	1	1	+1	0

N dark generations

• Spontaneously break $U(1)_B$

S^+	1	1	0	+B(S)
S^-	1	1	0	-B(S)

$$D = B_q + B_{q'}$$

$$D = B_q + B_{q'}$$

$$n_B \neq n_{\overline{B}} \Rightarrow n_X \neq n_{\overline{X}}$$

• The only global symmetry is a non-anomalous $U(1)_D$:

$$D = B_q + B_{q'}$$

$$n_B \neq n_{\overline{B}} \implies n_X \neq n_{\overline{X}}$$

 Unlike conventional ADM, the asymmetries are generated simultaneously.

$$D = B_q + B_{q'}$$

$$n_B \neq n_{\overline{B}} \implies n_X \neq n_{\overline{X}}$$

- Unlike conventional ADM, the asymmetries are generated simultaneously.
- Recent work by: Bell, Petraki, IMS, Volkas [1105.3730].

DIRECT DETECTION BOUNDS

DIRECT DETECTION BOUNDS

scattering

$$\frac{dR}{dE_R} = \frac{N_T \rho_{\odot}}{m_X} \int_{|\vec{v}| > v_{min}} d^3 v \ v f(\vec{v}, \vec{v}_{\oplus}) \frac{d\sigma}{dE_R}$$

$$\frac{dR}{dE_R} = \frac{N_T \rho_{\odot}}{m_X} \int_{|\vec{v}| > v_{min}} d^3 v \ v f(\vec{v}, \vec{v}_{\oplus}) \frac{d\sigma}{dE_R}$$
 particle physics

 Velocity distribution must be consistent with NFW:

$$\frac{dR}{dE_R} = \frac{N_T \rho_{\odot}}{m_X} \int_{|\vec{v}| > v_{min}} d^3 v \ v f(\vec{v}, \vec{v}_{\oplus}) \frac{d\sigma}{dE_R}$$
 particle physics

 Velocity distribution must be consistent with NFW:

$$f(v) \propto \left[\exp\left(rac{v_{esc}^2-v^2}{kv_0^2}
ight)-1
ight]^k$$
 [Lisanti, Strigari, Wacker, Wechsler (2010)]

$$\frac{dR}{dE_R} = \frac{N_T \rho_{\odot}}{m_X} \int_{|\vec{v}| > v_{min}} d^3 v \ v f(\vec{v}, \vec{v}_{\oplus}) \frac{d\sigma}{dE_R}$$
 particle physics

 Velocity distribution must be consistent with NFW:

$$f(v) \propto \left[\exp\left(rac{v_{esc}^2-v^2}{kv_0^2}
ight)-1
ight]^k$$
 [Lisanti, Strigari, Wacker, Wechsler (2010)]

High-velocity tail is important for light DM.

VECTOR CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{2\pi v^2} \left(\frac{q_V g_B^2}{m_B^2}\right)^2 F^2(E_R)$$

VECTOR CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{2\pi v^2} \left(\frac{q_V g_B^2}{m_B^2}\right)^2 F^2(E_R)$$

DD imposes: $m_X \lesssim \text{few GeV}$

VECTOR CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{2\pi v^2} \left(\frac{q_V g_B^2}{m_B^2}\right)^2 F^2(E_R)$$

DD imposes: $m_X \lesssim \text{few GeV}$

AXIAL CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{8\pi v^2} \left(\frac{q_A g_B^2}{m_B^2}\right)^2 \left[Av^2 + Bq^2\right] F^2(E_R)$$

VECTOR CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{2\pi v^2} \left(\frac{q_V g_B^2}{m_B^2}\right)^2 F^2(E_R)$$

DD imposes: $m_X \lesssim \text{few GeV}$

AXIAL CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{8\pi v^2} \left(\frac{q_A g_B^2}{m_B^2}\right)^2 \left[Av^2 + Bq^2\right] F^2(E_R)$$

DD imposes:

no bound

• For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (2010); Bai, Fox, Harnik (2010)].

$$p\overline{p} \to E_T + j$$

See Luca's talk.

Combined constraints: axial case

$$D^{\mu}X = \partial^{\mu}X + ig_B \left(q_V^0 + q_A \gamma^5\right) Z_B^{\mu}X$$

 $m_X = 10 \text{ GeV}$

Combined constraints: axial case

$$D^{\mu}X = \partial^{\mu}X + ig_B \left(q_V^0 + q_A \gamma^5\right) Z_B^{\mu}X$$

 $m_X = 10 \text{ GeV}$

CONCLUSIONS

- Gauging baryon number saves the proton + automatic DM candidate charged under baryonic force.
- · Simultaneous generation of dark and visible asymmetries.
- Consistent with bounds from B-factories, LEP, mono-jet Tevatron searches, and direct detection for:
 - GeV-scale DM with a GeV-scale mediator.
- LHC and direct detection will probe much of the remaining parameter space.

EXTRAS

Introduce:
$$X^{\pm} \sim \left(1, 1, 0, \pm \left(\frac{2}{3} - \frac{1}{N}\right)\right)$$

Introduce:
$$X^{\pm} \sim \left(1, 1, 0, \pm \left(\frac{2}{3} - \frac{1}{N}\right)\right)$$

$$\mathcal{L} \supset \frac{u_c d_c d_c' X}{\Lambda}$$

Introduce:
$$X^{\pm} \sim \left(1, 1, 0, \pm \left(\frac{2}{3} - \frac{1}{N}\right)\right)$$

$$\mathcal{L} \supset \frac{u_c d_c d'_c X}{\Lambda} \qquad \overline{q'} \to qqX$$

• Exotic quarks must decay...

Introduce:
$$X^{\pm} \sim \left(1, 1, 0, \pm \left(\frac{2}{3} - \frac{1}{N}\right)\right)$$

$$\mathcal{L} \supset \frac{u_c d_c d'_c X}{\Lambda} \qquad \overline{q'} \to qqX$$

Decay operator ↔ asymmetry transfer operator