Measurement of the forward-backward asymmetry in $t\bar{t}$ events in the l+jets channel

$\begin{array}{c} {\rm Doug} \ {\rm Orbaker} \\ {\rm on \ behalf \ of \ the \ D} \emptyset \ {\rm collaboration} \end{array}$

October 19, 2011

1 / 20

Asymmetry in top-antitop quark production

Asymmetry in the standard model

• Our predictions made at NLO in QCD via MC@NLO

Level	$A_{\rm FB}$ (%)
Production	5.0 ± 0.1
Reconstruction	2.4 ± 0.7

• Inclusive SM predictions vary from 5%-9%

Doug Orbaker (Rochester)

3 / 20

Event Selection and Reconstruction

• Search in the lepton (e/μ) + jets channel

• Reconstruct events with a constrained kinematic fit

- $m_W = 80.4 \text{ GeV}$
- $m_t = 172.5 \,\, {\rm GeV}$
- Keep only assignment with lowest χ^2
- 1581 events pass selection for 5.4 fb^{-1}

Maximum Likelihood Fit

Results from reconstruction of $A_{\rm FB}$

- Measured $A_{\rm FB} = \left(9.2 \pm 3.6(\text{stat})^{+0.8}_{-0.9}(\text{syst})\right)\%$
- Statistical significance from MC@NLO prediction: 1.9 SD

Dependence of $A_{\rm FB}$ on $m_{t\bar{t}}$ and $|\Delta y|$

• No significant dependence of $A_{\rm FB}$ on $m_{t\bar{t}}$

7 / 20

me

- Regularized unfolding via TUnfold class with 50 \rightarrow 26 bins in Δy
 - ▶ Regularize on curvature of event density
- Cross-checked with four bin ML unfolding
- Better statistical strength using regularized unfolding
- Statistical significance from MC@NLO prediction: 2.4 SD

Doug Orbaker (Rochester)

BF 2011

October 19, 2011

Lepton-based asymmetry

$$A_{\rm FB}^{l} = \frac{N(q_l y_l > 0) - N(q_l y_l < 0)}{N(q_l y_l > 0) + N(q_l y_l < 0)}$$

- Simple observable
- Same technique as measurement of reconstructed $A_{\rm FB}$
- To avoid large acceptance corrections: require $|y_l| < 1.5$
- 1532 events

	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
$A_{\rm FB}^l$ (%)	14.2 ± 3.8	15.9 ± 4.3	$7.0\pm$ 8.0
mc@nlo A_{FB}^{l} (%)	$0.8\pm$ 0.6	$2.1{\pm}~0.6$	-3.8 ± 1.2

- Production level MC@NLO prediction: $A_{\rm FB}^l = (2.1\pm0.1)\,\%$
- Migrations are very small \rightarrow correct only for acceptance
- Statistical significance from MC@NLO: 3.4 SD

Doug Orbaker (Rochester)

Measurement dominated by statistical uncertainties

Absolute uncertainty on $A_{\rm FB}$ (%)				
	Reco	Prod. level		
Source	Prediction Measurement		Measurement	
Jet reco	± 0.3	± 0.5	± 1.0	
JES/JER	+0.5	-0.5	-1.3	
Signal modeling	± 0.3	± 0.5	+0.3/-1.6	
b-tagging	-	± 0.1	± 0.1	
Charge ID	-	+0.1	+0.2/-0.1	
Bg subtraction	-	± 0.1	+0.8/-0.7	
Unfolding Bias	-	-	+1.1/-1.0	
Total	+0.7/-0.5	+0.8/-0.9	+1.8/-2.6	
Absolute uncertainty on $A_{\rm FB}^l$ (%)				
	Rec	Prod. level		
Source	Prediction	Measurement	Measurement	
Jet reco	± 0.3	± 0.1	± 0.8	
JES/JER	+0.1	-0.4	+0.1/-0.6	
Signal modeling	± 0.3	± 0.5	+0.2/-0.6	
b-tagging	-	± 0.1	± 0.1	
Charge ID	-	+0.1	+0.2/-0.0	
Bg subtraction	-	± 0.3	± 0.6	
Total	± 0.5	± 0.7	$\pm 1.0/-1.3$	

Cross checks

- Simultaneously measured $A_{\rm FB}$ for $t\bar{t}$ and W+jets
 - ▶ Also included events with 0 b-tags
 - ▶ Measured $A_{\rm FB}$ for W+jets in good agreement with simulation

- Checked $A_{\rm FB}$ by solenoid and toroid polarities
 - ▶ Found no significant dependence
- Checked $A_{\rm FB}$ by lepton charge
 - ▶ Found no significant dependence
- Good agreement between e+jets and μ +jets

$A_{\rm FB}$ and top pair p_T

• Is amount of gluon radiation the same for forward and backward events?

- If correlation exists, backward events selected more often than forward events
- Effect on measurement is included in systematics: -1.6%
- What is effect on prediction?

Modeling and top pair p_T

- The correlation between $p_T^{t\bar{t}}$ and $A_{\rm FB}$ may be large
- So we checked the modeling of $p_T^{t\bar{t}}$
- Drastic change needed to get simulation to match data for $p_T^{t\bar{t}}$

Bins of 1/2 resolution. Hash marks = uncertainty from jet reconstruction • Low $p_T^{t\bar{t}} \rightarrow \text{less gluon radiation} = ?$ larger predicted A_{FB}

Summary

- Inclusive results in agreement between DØ and CDF
- But deviate from predictions
- Measure no significant dependencies of A_{fb} on either $m_{t\bar{t}}$ or $|\Delta y|$
- Unfolded $A_{\text{FB}}^l = \left(15.2 \pm 3.8(\text{stat})_{-1.3}^{+1.0}(\text{syst})\right)\%$
- Compare to MC@NLO, but note limitations
- For more information: arXiv:1107.4995

Doug Orbaker (Rochester)

Backup Slides

Kinematic fitter

- Answers questions: Which jets came from top quark and which jets came from antitop quark?
- Gets right answer 70% of events where leading four jets are from $t\bar{t}$ decay.
- Constrain m_W to 80.4 GeV and m_t to 172.5 GeV.
- Vary jets within resolution and get χ^2 for each jet permutation.

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\Delta y > 0}$	849	455	394	717	132
Raw $N_{\Delta y < 0}$	732	397	335	597	135
$N_{t\bar{t}}$	1126 ± 39	622 ± 28	502 ± 28	902 ± 36	218 ± 16
N_W	376 ± 39	173 ± 28	219 ± 27	346 ± 36	35 ± 16
$N_{\rm MJ}$	79 ± 5	56 ± 3	8 ± 2	66 ± 4	13 ± 2
$A_{\rm FB}(\%)$	9.2 ± 3.7	$8.9{\pm}5.0$	$9.1{\pm}5.8$	12.2 ± 4.3	$-3.0{\pm}7.9$
mc@nlo $A_{\rm FB}$ (%)	$2.4{\pm}0.7$	$2.4{\pm}0.7$	$2.5{\pm}0.9$	$3.9{\pm}0.8$	-2.9 ± 1.1

	$l+\geq 4$ jets	$e + \geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{q \cdot y_l > 0}$	867	485	382	730	137
Raw $N_{q \cdot y_l < 0}$	665	367	298	546	119
$A^l_{ m FB}$ (%)	$14.2\pm~3.8$	$16.5{\pm}~4.9$	$9.8 \pm \ 5.9$	$15.9{\pm}~4.3$	$7.0{\pm}~8.0$
mc@nlo $A_{\rm FB}^l$ (%)	$0.8\pm~0.6$	0.7 ± 0.6	$1.0\pm~0.8$	$2.1{\pm}~0.6$	-3.8 ± 1.2

DØ detector

