Flavour physics of a generalized left-right symmetric model

Katrin Gemmler

T31 Physik-Department, Technische Universität München, Germany

Brookhaven Forum 2011 20th October 2011

> arXiv: 1111.xxxx M. Blanke, A. Buras, KG, T. Heidsieck

Left-right symmetric models

Characteristics:

• left-right (LR) symmetric gauge group

 $SU(3)_C imes SU(2)_L imes SU(2)_R imes U(1)_{B-L}$

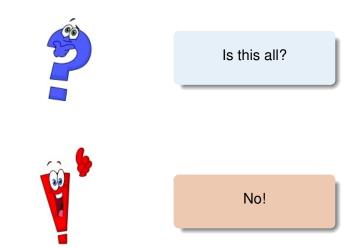
- left and right gauge couplings g_L and g_R
- left and right quark mixing matrices V^L and V^R

Already ...

- known since more than 35 years
- studied extensively by many authors from simplest scenarios with exact LR symmetry to more general frameworks
- 1. Lepton Number as the Fourth Color.
- ⁽³¹⁵⁵⁾ Jogesh C. Pati (Maryland U.), Abdus Salam (ICTP, Trieste & Imperial Coll., London). IC/74/7. Jan 1974. 35 pp. Published in Phys.Rev. D10 (1974) 275-289
- 2. Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation.
- ⁽¹⁴⁸⁾ Rabindra N. Mohapatra, Jogesh C. Pati (Maryland U.). MDDP-TR-74-085. Mar 1974. 11 pp. Published in Phys.Rev. D11 (1975) 566-571
 - 3. Exact Left-Right Symmetry and Spontaneous Violation of Parity.
- ⁽¹²⁵⁶⁾ G. Senjanovic, Rabindra N. Mohapatra (City Coll., N.Y.). CCNY-HEP-75-5. May 1975. 12 pp. Published in Phys.Rev. D12 (1975) 1502

Katrin Gemmler (TUM)

Is this all?



What is new?

simultaneous analysis of the most interesting $\Delta F = 2$ observables and $B \rightarrow X_{d,s}\gamma$

Further constraints:

- electroweak precision tests
- tree-level decays
- direct experimental bounds

Generality:

- no exact LR symmetry: $g_L \neq g_R$ and $V^L \neq V^R$
- most general parametrization of V^R (three new mixing angles and six CP-violating phases)

Attraction:

 masses for heavy gauge bosons around 2 – 3 TeV able to be measured at LHC

Questions

- Can this class of models be consistent with all existing data for RH scales in reach of LHC?
- What is the role played by the heavy Higgses?
- Can the V_{ub} problem be solved in this framework?
- Which are the most interesting effects in the flavour sector?
- What can we conclude about the structure of the RH mixing matrix?

Scales and parameters

two step spontaneous symmetry breaking

$$SU(2)_L \times \underbrace{SU(2)_R \times U(1)_{B-L}}_{\kappa_R: \, \text{VEV of triplet}} \to \underbrace{SU(2)_L \times U(1)_Y}_{\kappa,\kappa': \, \text{VEV of bidoublet}} \to U(1)_Q$$

- characteristic scales
 - κ_B ~ O(TeV) fixes masses of heavy particles
 - $v = \sqrt{\kappa^2 + {\kappa'}^2} = 174 \, \text{GeV}$ can be associated with the SM VEV
- useful parametrization

$$\epsilon = rac{\mathbf{v}}{\kappa_R}, \qquad \mathbf{s} = rac{\kappa'}{\mathbf{v}} \qquad ext{and} \qquad \mathbf{c} = rac{\kappa}{\mathbf{v}}$$

Heavy particles

Extended Higgs sector:

- only two neutral flavour changing Higgses H⁰₁ and H⁰₂ and the charged Higgs H⁺ with leading order couplings to quarks
- their masses are identical at leading order

$$M_{H_1^0} = M_{H_2^0} = M_{H^+} = M_{H^+}$$

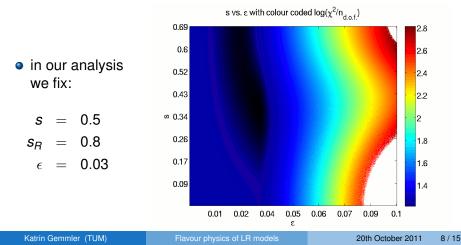
Extended gauge sector:

- heavy gauge bosons W_R and Z'
- EWSB introduces small admixture between gauge bosons corresponding to SU(2)_L and SU(2)_R

mixing $\sim s_R sc\epsilon^2$

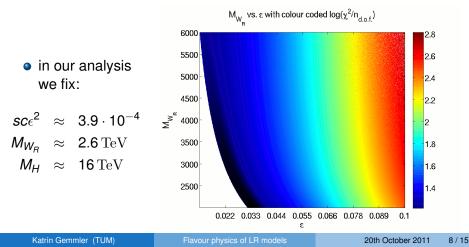
Electroweak precision analysis

- - most constraining observables according to the global fit analysis of [Hsieh, Schmitz, Yu, Yuan '2010]
 - additional constraints e.g. M_W and direct bounds on M_{W_R}



Electroweak precision analysis

- - most constraining observables according to the global fit analysis of [Hsieh, Schmitz, Yu, Yuan '2010]
 - additional constraints e.g. M_W and direct bounds on M_{W_R}



Constraints from tree level decays

vectorial and axial combinations of LH and RH mixing matrices

$$|V_{ij}|_{V} = \left|V_{ij}^{L} + cs\epsilon^{2}V_{ij}^{R}\right| \qquad |V_{ij}|_{A} = \left|V_{ij}^{L} - cs\epsilon^{2}V_{ij}^{R}\right|$$

constrained by tree-level charged current transitions

transition	considered decay	$ V_{ij}^L $	$ V_{ij} _V$	$ V_{ij} _A$
$u \rightarrow d$	superallowed $0^+ ightarrow 0^+$	-	0.97425(22)	-
	$\pi^+ ightarrow \mu^+ \nu$	-	-	0.981(13)
$u \rightarrow s$	$K \rightarrow \pi \ell \nu$	-	0.2257(12)	-
	$K ightarrow \mu u$	-	-	0.2268(32)
$c \rightarrow d$	$D ightarrow K \ell u$ and $D ightarrow \pi \ell u$	-	0.229(25)	-
	νN charm production	-	-	0.230(11)
$c \rightarrow s$	semileptonic D decays	-	0.98(10)	-
	$D_s \rightarrow \tau^+ \nu$	-	-	0.978(31)
$b \rightarrow u$	$B ightarrow X_U \ell u$	4.27(38) · 10 ^{−3}	-	-
	$B ightarrow \pi \ell u$	-	3.38(36) · 10 ⁻³	-
	B ightarrow au u	-	-	4.70(56) · 10 ⁻³
$b \rightarrow c$	$B ightarrow X_{C} \ell u_{\ell}$	41.54(73) · 10 ⁻³	-	-
	$B ightarrow D\ell u$	-	$39.4(17) \cdot 10^{-3}$	-
	$B ightarrow D^* \ell u$	-	-	39.70(92) · 10 ⁻³
$t \rightarrow b$	$Br(t \rightarrow bW)/Br(t \rightarrow qW)$	0.95(5)	-	-

Constraints from tree level decays

vectorial and axial combinations of LH and RH mixing matrices

$$egin{aligned} |V_{ij}|_V &= \left|V_{ij}^L + cs\epsilon^2 V_{ij}^R
ight| \qquad & |V_{ij}|_A = \left|V_{ij}^L - cs\epsilon^2 V_{ij}^R
ight| \end{aligned}$$

• tension between inclusive and exclusive determinations of $|V_{ub}|$

transition	considered decay	$ V_{ij}^L $	<i>V_{ij}</i> _{<i>V</i>}	$ V_{ij} _A$
$b \rightarrow u$	$B o X_U \ell \nu$	4.27(38) · 10 ⁻³	-	-
	$B \rightarrow \pi \ell \nu$	-	$3.38(36) \cdot 10^{-3}$	-
	$B \to \tau \nu$	-	-	4.70(56) · 10 ⁻³

• V_{ub} problem

- can in principle be resolved in presence of RH currents [Crivellin '09]
- confirmed by an effective theory approach with RH currents [Buras, KG, Isidori '10]

Constraints from tree level decays

vectorial and axial combinations of LH and RH mixing matrices

$$V_{ij}|_{V} = \left| V_{ij}^{L} + cs\epsilon^{2}V_{ij}^{R} \right| \qquad |V_{ij}|_{A} = \left| V_{ij}^{L} - cs\epsilon^{2}V_{ij}^{R} \right|$$

tension between inclusive and exclusive determinations of |V_{ub}|

transition	considered decay	$ V_{ij}^L $	<i>V_{ij}</i> _{<i>V</i>}	$ V_{ij} _A$
$b \rightarrow u$	$B \to X_U \ell \nu$	4.27(38) · 10 ⁻³	-	-
	$B ightarrow \pi \ell u$	-	$3.38(36) \cdot 10^{-3}$	-
	$B \to \tau \nu$	-	-	$4.70(56) \cdot 10^{-3}$

• V_{ub} problem solved for $sc\epsilon^2 |V^R_{ub}| \sim 6 imes 10^{-4}$

$$sc\epsilon^2 \sim 4 \cdot 10^{-4}$$
 (EWPT) and $|V^R_{ub}| \lesssim \left\{ egin{array}{c} 1 & (ext{unitarity}) \ 0.2 & (ext{full analysis}) \end{array}
ight.$

In this concrete model the V_{ub} problem cannot be solved.

Katrin Gemmler (TUM)

$\Delta F = 2$ processes

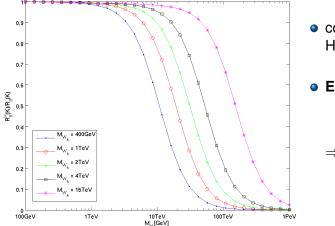
main impact from LR operators

• dominant NP mixing amplitude for meson system $q = K, B_d, B_s$

$$(M_{12})_{\mathrm{LR}} \sim \sum_{i,j=u,c,t} \left[\lambda_i^{\mathrm{LR}}(q)\lambda_j^{\mathrm{RL}}(q)
ight]^* R_{ij}(q)$$

 $\lambda_i^{\text{LR}}(q), \lambda_j^{\text{RL}}(q)$ - involve quark mixing matrices V^L and V^R $R_{ij}(q)$ - involves loop integral and QCD running

Role of the neutral Higgses



 contribution of neutral Higgs to R_{tt}(K)

• Example:

- $M_{W_R} = 2.6 \,\mathrm{TeV}$
 - $M_H = 16 \,\mathrm{TeV}$
- \Rightarrow neutral Higgs > 80% of the LR contribution

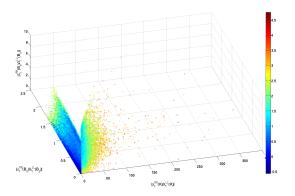
The tree-level contributions of the neutral Higgs are by far dominant and cannot be neglected as often done in literature.

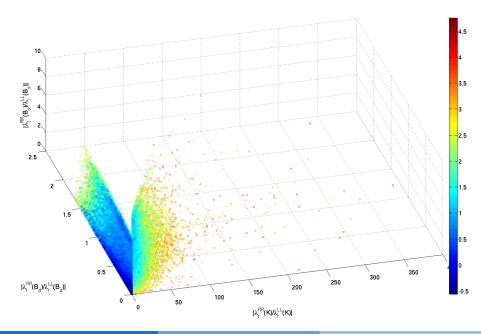
Katrin Gemmler (TUM)

Size of effects in the meson systems

• relevant prefactor of quark flavour matrices:

$$\frac{\lambda_t^{\mathrm{LR}}(\boldsymbol{q})\lambda_t^{\mathrm{RL}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{LL}}(\boldsymbol{q})} = \frac{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{RR}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{LL}}(\boldsymbol{q})} = \frac{\lambda_t^{\mathrm{RR}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})}$$



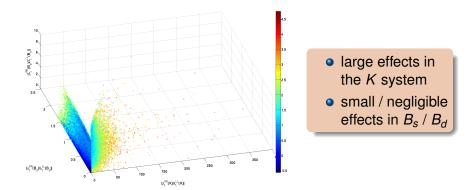


Katrin Gemmler (TUM)

Size of effects in the meson systems

• relevant prefactor of quark flavour matrices:

$$\frac{\lambda_t^{\mathrm{LR}}(\boldsymbol{q})\lambda_t^{\mathrm{RL}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{LL}}(\boldsymbol{q})} = \frac{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{RR}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})\lambda_t^{\mathrm{LL}}(\boldsymbol{q})} = \frac{\lambda_t^{\mathrm{RR}}(\boldsymbol{q})}{\lambda_t^{\mathrm{LL}}(\boldsymbol{q})}$$



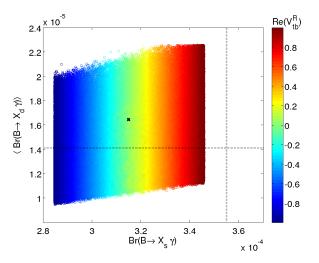
Main messages from $B \rightarrow X_{s\gamma}$

Theory:

 (Charged) Higgs exchanges are similarly important to ΔF = 2 case

Phenomenology:

• enhancement in $Br(B \rightarrow X_s \gamma)$ depending on the V_{tb}^R element and parameter *s*



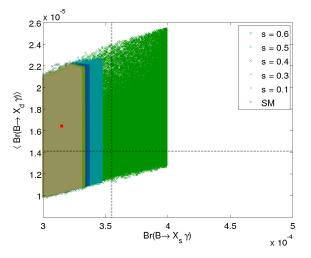
Main messages from $B \rightarrow X_{s\gamma}$

Theory:

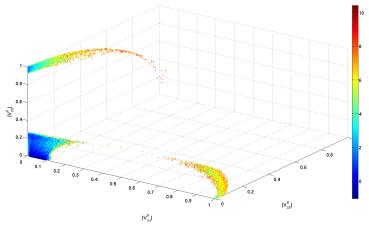
 (Charged) Higgs exchanges are similarly important to ΔF = 2 case

Phenomenology:

• enhancement in $Br(B \rightarrow X_s \gamma)$ depending on the V_{tb}^R element and parameter *s*



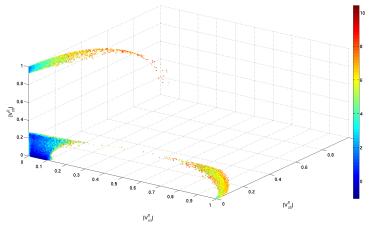
General structure of the RH mixing matrix



- possible to classify two scenarios with low fine-tuning
- find a simplified matrix with fewer parameters, which can solve tensions in SM flavour observables

Katrin Gemmler (TUM)

General structure of the RH mixing matrix



- possible to classify two scenarios with low fine-tuning
- find a simplified matrix with fewer parameters, which can solve tensions in SM flavour observables

Katrin Gemmler (TUM)

Conclusions

- Can this class of models be consistent with all existing data for RH scales in reach of LHC?
 → Yes
- What is the role played by the heavy Higgses?
 → a dominant role
- Can the V_{ub} problem be solved in this framework? $\rightarrow No$
- Which are the most interesting effects in the flavour sector?
 - \rightarrow big effects in the K sector
 - \rightarrow enhancement of Br($B \rightarrow X_s \gamma$)
- What can we conclude about the structure of the RH mixing matrix?
 - \rightarrow in general complicated, but possibility of identifying two scenarios with low fine-tuning

Katrin Gemmler (TUM)

Definition of fine-tuning

Barbieri-Giudice fine-tuning:

sensitivity of observables to small variation of model parameters

$$\Delta_{\mathsf{BG}}(Obs) = \max_{i} \left| \frac{par_{i}}{Obs} \frac{\partial Obs}{\partial par_{i}} \right|$$

modified Barbieri-Giudice fine-tuning:

$$\Delta_{\mathrm{BG}}^{\mathrm{mod}} = rac{1}{N_{Obs}}\sum_{j=1}^{N_{Obs}}\Delta_{\mathrm{BG}}(Obs_j)$$

- Obs observable
- par parameter
- N_{Obs} number of observables

Katrin Gemmler (TUM)

Parameter counting

gauge sector:

 g_s , g_L , g_R , g'

Higgs sector:

 m_H , V, S, κ_R

flavour sector:

- V^L three angles and one phase
- V^R three angles and six phases

Definition of λ_i factors

Depending on the Meson system the factors λ_i read

$$\begin{array}{lll} \lambda_i^{AB}(K) &=& V_{is}^{A*}V_{id}^B\\ \lambda_i^{AB}(B_q) &=& V_{ib}^{A*}V_{iq}^B \end{array}$$

where the indices are given by

$$\begin{array}{rcl} A,B &=& L,R\\ q &=& d,s\\ i &=& u,c,t \end{array}$$