Majorana Neutrino and W' Couplings at the LHC

Ian Lewis

Brookhaven National Laboratory Tao Han, Richard Ruiz, Zongguo Si

Oct. 20, 2011 Brookhaven Forum 2011

Outline

1 Introduction

- Theoretical Framework
- Signal Reconstruction and Selection at the LHC
- 4 Measuring $W'N\ell$ Chiral Couplings
- (5) W' and initial state quark chiral couplings

6 Conclusions

Motivation

- Over the last decade, neutrino oscillation experiments have shown that neutrinos are massive.
- Massive neutrinos can be accomodated by introducing heavy right-handed SM singlet neutrinos, N_R .

Motivation

- Over the last decade, neutrino oscillation experiments have shown that neutrinos are massive.
- Massive neutrinos can be accomodated by introducing heavy right-handed SM singlet neutrinos, N_R .
- Many models with heavy massive right-handed neutrinos also contain new charged gauge bosons, *W*'s
- If new heavy states at the TeV scale, the LHC has potential to discover the states.

Motivation

- Over the last decade, neutrino oscillation experiments have shown that neutrinos are massive.
- Massive neutrinos can be accomodated by introducing heavy right-handed SM singlet neutrinos, N_R .
- Many models with heavy massive right-handed neutrinos also contain new charged gauge bosons, *W*'s
- If new heavy states at the TeV scale, the LHC has potential to discover the states.
- In particular, if *M_{W'}* > *M_{N_R* then it may be possible to observe the spectacular lepton-number-violating process *pp* → *W'* → ℓ[±]ℓ[±]*jj*}
- If such particles are discovered, it will be imperative to measure their properties, such as mass, spin, and chiral couplings.

Interaction Lagrangian

Charged current interactions of Majorana neutrinos, and W' interactions:

$$\mathcal{L} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{n+3} V_{m'\ell}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \ell$$
$$+ \sum_{\alpha=L,R} \frac{g_{\alpha}}{\sqrt{2}} W_{\alpha}^{\prime} {}^{+\mu} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{n+3} \overline{N_{m'}^{c}} V_{\ell m'}^{\alpha*} \gamma^{\mu} P_{\alpha} \ell + \text{h.c.}$$

- V and V^{α} are neutrino mixing matrices.
- W'_L will denote a W' with purely left-handed couplings, and W'_R a W' with purely right-handed couplings.

Signal

• We consider the lepton number violating process:

Signal

• We consider the lepton number violating process:

- To fully reconstruct the event, the origin of each charged lepton must be determined.
- There are two possible solutions to the neutrino mass: $m_N^2 = (p_{\ell_1} + p_{j_1} + p_{j_2})^2$ or $m_N^2 = (p_{\ell_2} + p_{j_1} + p_{j_2})^2$
- The lepton that most closely reconstructs the majorana neutrino mass is identified as the lepton originating from the neutrino.

Event Selection

• Energy resolution is simulated according to a Gaussian distribution, and is parameterized according to

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b$$

where for leptons a = 5%, b = 0.55% and for jets a = 100%, b = 5%.

• The basic detector acceptance cuts are applied:

$$p_T^j > 30\,{
m GeV},\; p_T^\ell > 20\,{
m GeV},\; \eta_j < 3.0,\; \eta_\ell < 2.5$$

• Signal consists of two leptons and two jets that are required to be well separated:

$$\Delta R_{\ell j}^{\min} \ge 0.4, \ \Delta R_{jj} \ge 0.3$$

• Finally, apply the missing energy and invariant mass cuts:

- The chiral coupling of the *W*' is encoded in the polarization of the Majorana neutrino.
- Spin observables, such as $\langle \hat{s}_N \cdot \hat{a} \rangle$, are sensitive to the neutrino polarization.

- The chiral coupling of the *W*' is encoded in the polarization of the Majorana neutrino.
- Spin observables, such as ⟨ŝ_N ⋅ â⟩, are sensitive to the neutrino polarization.
- Define θ* to be the angle between â and the motion of the lepton in the neutrino's rest frame:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} (N \to \ell^{\pm} j j) = \frac{1}{2} \left(1 + 2A\cos\theta^* \right),$$

where *A* is called the analyzing power and is related to $\langle \hat{s}_N \cdot \hat{a} \rangle$

- The chiral coupling of the *W*' is encoded in the polarization of the Majorana neutrino.
- Spin observables, such as ⟨ŝ_N ⋅ â⟩, are sensitive to the neutrino polarization.
- Define θ* to be the angle between â and the motion of the lepton in the neutrino's rest frame:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} (N \to \ell^{\pm} j j) = \frac{1}{2} \left(1 + 2A\cos\theta^* \right),$$

where *A* is called the analyzing power and is related to $\langle \hat{s}_N \cdot \hat{a} \rangle$

• Choose \hat{a} as the direction of the neutrino in the partonic c.m.

Lepton Angular Distribution

At partonic level, the angular distribution of the lepton originating from neutrino decay is

$$\frac{d\hat{\sigma}}{d\cos\theta_{\ell_2}}(u\bar{d} \to \ell_1^+ N \to \ell_1^+ \ell_2^+ W^-) = \frac{\hat{\sigma}_0}{2} \left(1 + \left(\frac{\hat{\sigma}(W_0) - \hat{\sigma}(W_T)}{\hat{\sigma}(W_0) + \hat{\sigma}(W_T)}\right) \frac{g_R^{N\ell^2} - g_L^{N\ell^2}}{g_R^{N\ell^2} + g_L^{N\ell^2}} \frac{2 - x_N^2}{2 + x_N^2} \cos\theta_{\ell_2} \right)$$

- θ_l is the angle between the lepton in the neutrino rest frame and the direction of motion of the neutrino in the partonic c.m.
- $\hat{\sigma}(W_0)$ and $\hat{\sigma}(W_T)$ are the cross sections for neutrino decay into longitudinally and transversely polarized *W*'s, respectively.

•
$$x_N = m_N / \sqrt{\hat{s}}$$
 and $x_W = m_W / m_N$.

For an on-shell W', the analyzing power is $A = \hat{A} = \frac{1}{2} \frac{1 - 2x_W^2}{1 + 2x_W^2} \frac{2 - x_N^2}{2 + x_N^2} \frac{g_R^{N\ell^2} - g_L^{N\ell^2}}{g_R^{N\ell^2} + g_L^{N\ell^2}}$

Lepton Angular Distribution

$$\frac{d\hat{\sigma}}{d\cos\theta_{\ell_2}}(u\bar{d}\to\ell_1^+N\to\ell_1^+\ell_2^+W^-) = \frac{\hat{\sigma}_0}{2}\left(1 + \left(\frac{\hat{\sigma}(W_0) - \hat{\sigma}(W_T)}{\hat{\sigma}(W_0) + \hat{\sigma}(W_T)}\right)\frac{g_R^{N\ell^2} - g_L^{N\ell^2}}{g_R^{N\ell^2} + g_L^{N\ell^2}}\frac{2 - x_N^2}{2 + x_N^2}\cos\theta_{\ell_2}\right)$$

Spin Correlations

Lepton Forward Backward Asymmetry

• Without cuts:

$$A = \mathcal{A} = \frac{\sigma(\cos \theta_{\ell 2} \ge 0) - \sigma(\cos \theta_{\ell 2} < 0)}{\sigma(\cos \theta_{\ell 2} \ge 0) + \sigma(\cos \theta_{\ell 2} < 0)}$$

• For
$$M_{W'} = 2.5$$
 TeV and $m_N = 500$ GeV:
 $A = \pm 0.43$ for W'_R and W'_L , respectively.

• Results for \mathcal{A} from signal simulation and reconstruction:

Я	14 TeV	
	W'_L	W'_R
No cuts or smearing	-0.43	0.43
All cuts and smearing	0.063	0.71
Without ΔR_{jj} cuts	-0.36	0.46

W' and initial state quark chiral couplings

W' and initial state quark couplings

Distribution of angle between neutrino production and decay planes, Φ, is sensitive to W' coupling to initial state quarks.

W' and initial state quark couplings

- Distribution of angle between neutrino production and decay planes, Φ, is sensitive to W' coupling to initial state quarks.
- The angular distribution is then

$$\frac{d\hat{\sigma}}{d\Phi} = \frac{\sigma_0}{2\pi} \left(1 + \frac{3\pi^2}{16} \frac{x_N}{2 + x_N^2} \frac{\hat{\sigma}(W_0) - \hat{\sigma}(W_T)}{\hat{\sigma}(W_0) + \hat{\sigma}(W_T)} \frac{g_R^{qq'2} - g_L^{qq'2}}{g_R^{qq'2} + g_L^{qq'2}} \cos\Phi \right)$$

• Where Φ is measured in the partonic c.m.:

$$\Phi = \operatorname{sign}\left((\hat{\mathbf{p}}_N \times \mathbf{p}_\ell) \cdot \mathbf{p}_q\right) \cos^{-1}\left(\frac{\hat{\mathbf{p}}_N \times \mathbf{p}_\ell}{|\hat{\mathbf{p}}_N \times \mathbf{p}_\ell|} \cdot \frac{\hat{\mathbf{p}}_N \times \mathbf{p}_q}{|\hat{\mathbf{p}}_N \times \mathbf{p}_q|}\right)$$

• The W'_L and W'_R distributions are 180° out of phase.

To explain this results, choose frame and orientation carefully:

- Work in the neutrino's rest frame.
- Define \hat{z} direction to be the neutrino's direction in the partonic c.m.
- Define \hat{y} direction to be the quark momentum component perpindicular to \hat{z}

- In this frame and with this orientation $\Phi = \phi_q \phi_\ell$.
- Analyze spin correlations with \hat{y} as the quantization axis.

Ian Lewis (BNL)

$$\frac{d\hat{\sigma}}{d\Phi} = \frac{\sigma_0}{2\pi} \left(1 + \frac{3\pi^2}{16} \frac{x_N}{2 + x_N^2} \frac{\hat{\sigma}(W_0) - \hat{\sigma}(W_T)}{\hat{\sigma}(W_0) + \hat{\sigma}(W_T)} \frac{g_R^{qq'^2} - g_L^{qq'^2}}{g_R^{qq'^2} + g_L^{qq'^2}} \cos(\phi_q - \phi_\ell) \right)$$

Φ Distributions

To measure Φ , associate the system direction in the lab frame with the intitial state quark direction.

Φ Distributions

To measure Φ , associate the system direction in the lab frame with the intitial state quark direction.

Conclusions

Conclusions

- Over the last decade, neutrino oscillation experiments have shown that neutrinos are massive.
- Many models with heavy massive right-handed neutrinos also contain new charged gauge bosons, *W*'s
- If new heavy states at the TeV scale, the LHC has potential to discover the states.
- If such particles are discovered, it will be imperative to measure their properties, such as mass, spin, and chiral couplings.

Conclusions

Conclusions

- Over the last decade, neutrino oscillation experiments have shown that neutrinos are massive.
- Many models with heavy massive right-handed neutrinos also contain new charged gauge bosons, *W*'s
- If new heavy states at the TeV scale, the LHC has potential to discover the states.
- If such particles are discovered, it will be imperative to measure their properties, such as mass, spin, and chiral couplings.
- We analyzed the signal $pp \to W' \to \ell^+ \ell^+ jj$
- Through analytical results, intuitive understanding, and monte carlo simulation we showed that
 - (a) the $W'N\ell$ chiral couplings can be measured by observing the angular distribution of the lepton as originating from the neutrino in the neutrino's rest frame.
 - (b) The chiral couplings of the W' and initial state quarks can be measured by observing the angular distribution of the neutrino production and decay planes.

Extra Slides

Majorana Neutrino Decay

Majorana neutrino may decay to W^{\pm} , Z and higgs:

$$\Gamma_N(\ell^{\pm}W_0^{\mp}) = \frac{g_2^2}{64\pi M_W^2} |V_{\ell4}|^2 m_N^3 (1-x_W^2)^2, \qquad \Gamma_N(\ell^{\pm}W_T^{\mp}) = \frac{g_2^2}{32\pi} |V_{\ell4}|^2 m_N \left(1-x_W^2\right)^2$$

$$\Gamma_N(\mathbf{v}_{\ell}Z) = \frac{g_2^2}{32\pi\cos^2\theta_W} |V_{\ell4}|^2 m_N \left(1+\frac{m_N^2}{2M_Z^2}\right) (1-x_Z^2)^2 \qquad \Gamma_N(\mathbf{v}_{\ell}H) = \frac{g_2^2}{64\pi M_W^2} |V_{\ell4}|^2 m_N^3 (1-x_H^2)^2$$

where $x_i = M_i/m_N$.

Signal and Background

For $M_{W'} = 2.5$ TeV and $m_N = 500$ GeV, the signal cross section with consecutive cuts is:

σ(fb)	14 TeV	
0(10)	W'_L	W'_R
No cuts or smearing	2.7	3.6
+Smearing+Acceptance Cuts	2.4	2.6
$+\Delta R$ cuts	1.2	2.0
$+m_N^{\rm rec}$ and \hat{s} cuts	0.95	1.8
$+\not\!$	0.77	1.5

The largest backgrounds are $t\bar{t}$ with

$$t \to W^+ b \to \ell^+ \nu_l b, \quad \bar{t} \to W^- \bar{b} \to W^- \bar{c} \nu_l \ell^+.$$

Other backgrounds include

$$\begin{array}{ll} pp \rightarrow W^{\pm}W^{\pm}W^{\mp}, & pp \rightarrow W^{\pm}W^{\pm}jj \\ & pp \rightarrow jjZZ, & pp \rightarrow jjZW \end{array}$$

At the 14 TeV, with all cuts except m_N^{rec} and \hat{s} , the total background cross section is 0.085 fb.

Ian Lewis (BNL)