



#### **CPV** measurements at LHCb

Liming Zhang (Syracuse University) on behalf of the LHCb Collaboration

> Brookhaven Forum 2011 October 19-21, 2011

#### <u>Outline</u>

**>** Direct *CP* asymmetry in B<sup>0</sup> and  $B_s \rightarrow K\pi$ 

 $\triangleright \phi_s$  measurements in  $B_s \rightarrow J/\psi \phi$  and  $J/\psi f_0(980)$ 

> CPV in D<sup>0</sup> decays



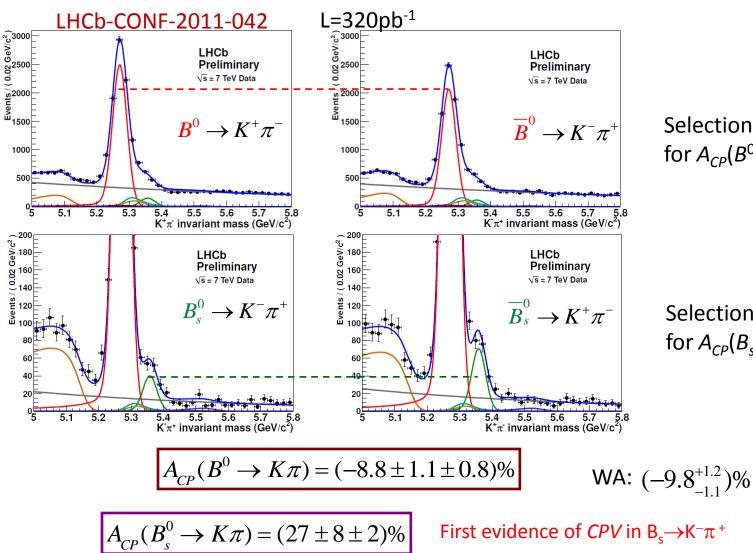


- Measurements of CP-violation in B and D sectors are a good way to search for New Physics.
  - Complementary to direct search in ATLAS and CMS
- LHCb was built to precisely measure CP violating and rare b & c decays:
  - Good proper time resolution for time dependent analyses with fast mixing frequencies
  - Good particle ID for flavour tagging and discrimination between final states
  - High statistics

# $\underbrace{HCb}_{CP} A_{CP} \text{ in } B^0 \longrightarrow K^+\pi^- \text{ and } B_s \longrightarrow K^-\pi^+$

The direct *CP* asymmetry  $A_{CP}(B \to K\pi) = \frac{\Gamma(B) - \Gamma(B)}{\Gamma(B) - \Gamma(B)}$ 

The raw yield asymmetry is corrected for Detection and Production effects


$$A_{CP} = A_{RAW} - A_{\Delta}$$
$$A_{\Delta} = A_{D} + \kappa A_{P}$$

 $\kappa$ : reduction of production asymmetry due to neutral *B*-meson mixing, & lifetime acceptance κ(B<sup>0</sup>)≈0.3, κ(B<sub>s</sub>)≈-0.03

- $A_{\rm D}({\rm K}\pi)$  is measured in control channels  ${\rm D}^* \rightarrow {\rm D}^0(\rightarrow {\rm K}\pi)\pi^+$ ,  ${\rm D}^* \rightarrow {\rm D}^0(\rightarrow {\rm K}{\rm K})\pi^+$ , using well measured world average (WA) of  $A_{\rm CP}({\rm D}^0 \rightarrow {\rm K}{\rm K})$  and negligible  $A_{\rm CP}({\rm D}^0 \rightarrow {\rm K}\pi)$ .
- $A_{\rm P}$  is determined using  $B^0 \rightarrow J/\psi K^*(\rightarrow K\pi)$ .

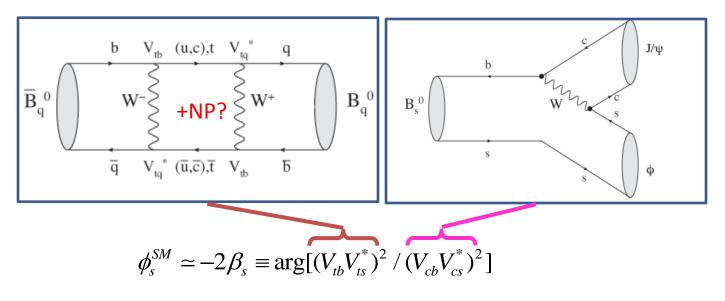
$$A_{\Delta}(B^0 \to K^+ \pi^-) = (-0.7 \pm 0.6)\%$$
$$A_{\Delta}(B_s^0 \to K^- \pi^+) = (1.0 \pm 0.2)\%$$





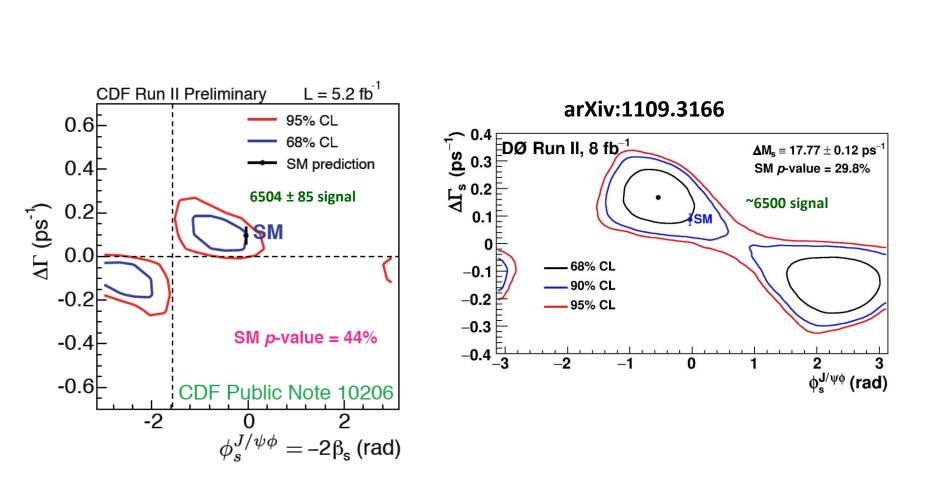
Selection optimized for  $A_{CP}(B^0 \rightarrow K\pi)$ 

Selection optimized for  $A_{CP}(B_{S} \rightarrow K\pi)$ 


First evidence of *CPV* in  $B_s \rightarrow K^-\pi^+$ 

Consistent with CDF value:  $(39 \pm 15 \pm 8)\%$ 





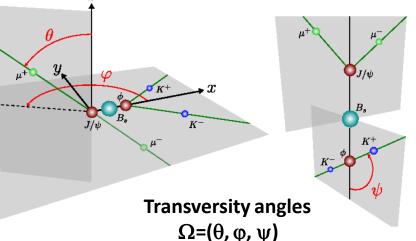

- Interference of decays with and without mixing in  $B_s$  allows to measure the *CPV* phase  $\phi_s$
- It's sensitive to New Physics in  $B_s$  mixing



SM prediction (CKM fitter)  $-2\beta_{s}$  = -0.036  $\pm$  0.002 rad

VDED N




## Measurements from Tevatron







- $B_s \rightarrow J/\psi \phi$  is  $P \rightarrow VV$ - L=1:  $A_{\perp}$  (CP odd)
  - L=0, 2: A<sub>0</sub>, A<sub>||</sub> (CP even)
- Additional S-wave KK
  - $A_{s}$  (CP odd)
- Separated by angular analysis in transversity basis



Signal PDF: flavour tagged, time and angular dependent

$$S(t,\vec{\Omega};\vec{\lambda}) = \varepsilon(t,\vec{\Omega}) \times \left(\frac{1+qD}{2}s(t,\vec{\Omega};\vec{\lambda}) + \frac{1-qD}{2}\overline{s}(t,\vec{\Omega};\vec{\lambda})\right) \otimes R_{t}$$

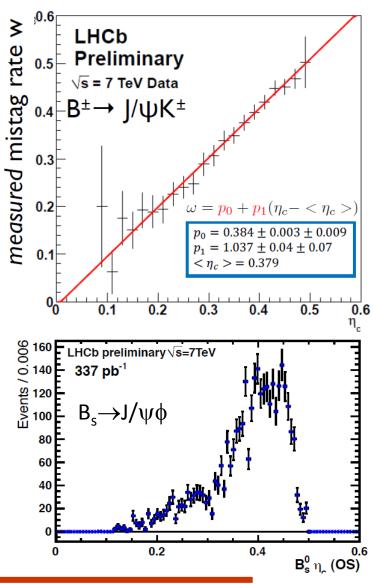
acceptance

flavour tagging q: tag decision,  $D = 1-2\omega, \omega$ : mistag rate

time resolution, measured  $\approx 50$  fs using prompt J/ $\psi$  + KK

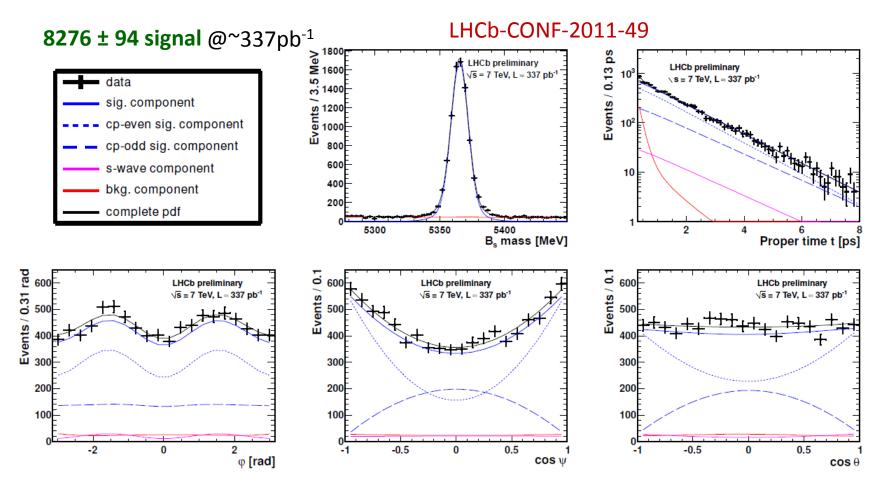
Physics parameters  $\vec{\lambda} = (\Gamma_s, \Delta \Gamma_s, \Delta m_s, \phi_s, |A_0|^2, |A_1|^2, \delta_1, |A_2|^2, \delta_2)$ 

 $\Delta m_s = 17.63 \pm 0.11 \pm 0.03 \text{ ps}^{-1}$  with 2010 data <u>LHCb-CONF-2011-005</u>


New: 17.725±0.041±0.026 ps<sup>-1</sup> with 2011 data



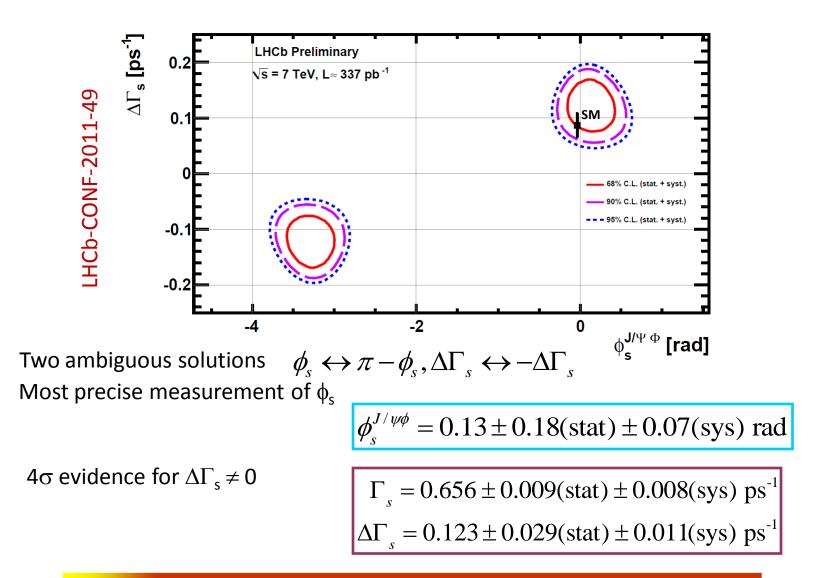





- By now we only use opposite side (OS) tagging
- Combine 4 observables into an estimated mistag probability  $\eta_c$ :
  - High-pt muons
  - High-pt electrons
  - High-pt kaons
  - Opposite side vertex charge
- Calibrate on  $B^{\pm} \rightarrow J/\psi K^{\pm}$  data
- Tagging power  $\varepsilon D^2 = (2.08 \pm 0.41)\%$



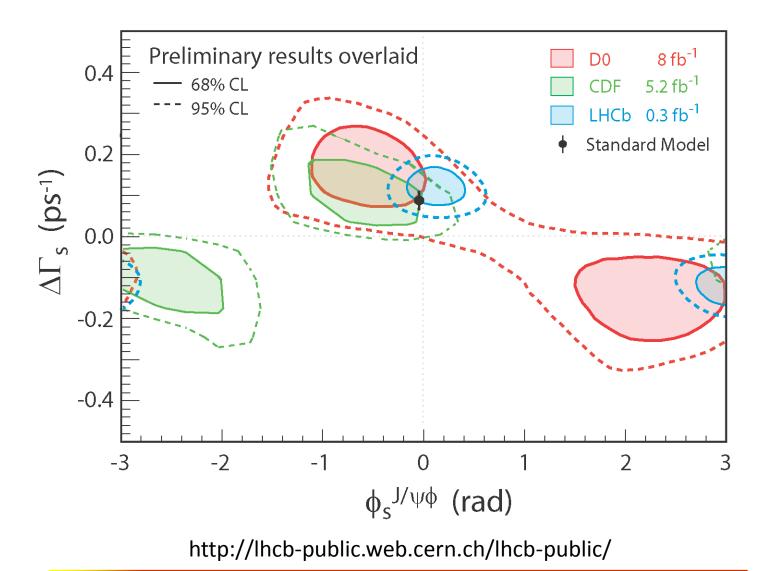
## **Fit Projections**






Goodness of Fit: p-value 44% using point-to-point dissimilarity test [arXiv:1006.3019]

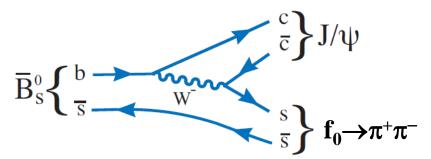




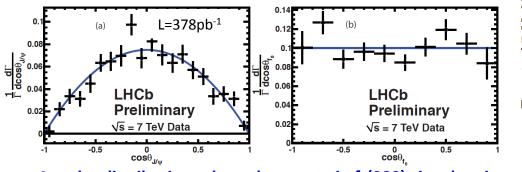




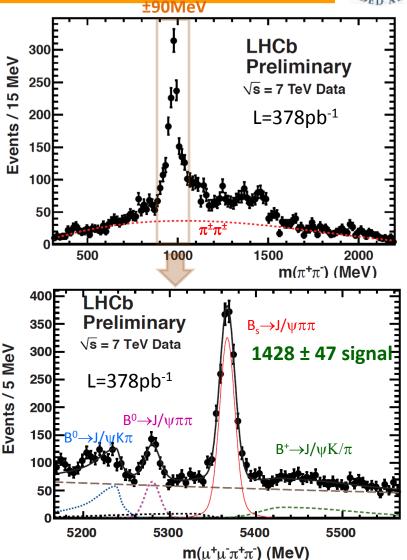

### **Overlay of all data**

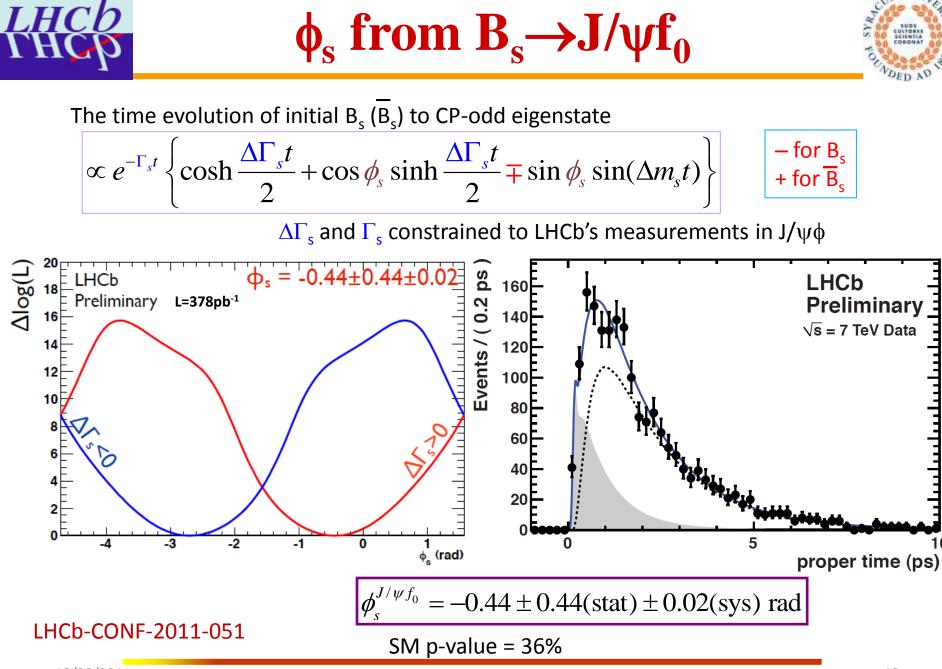


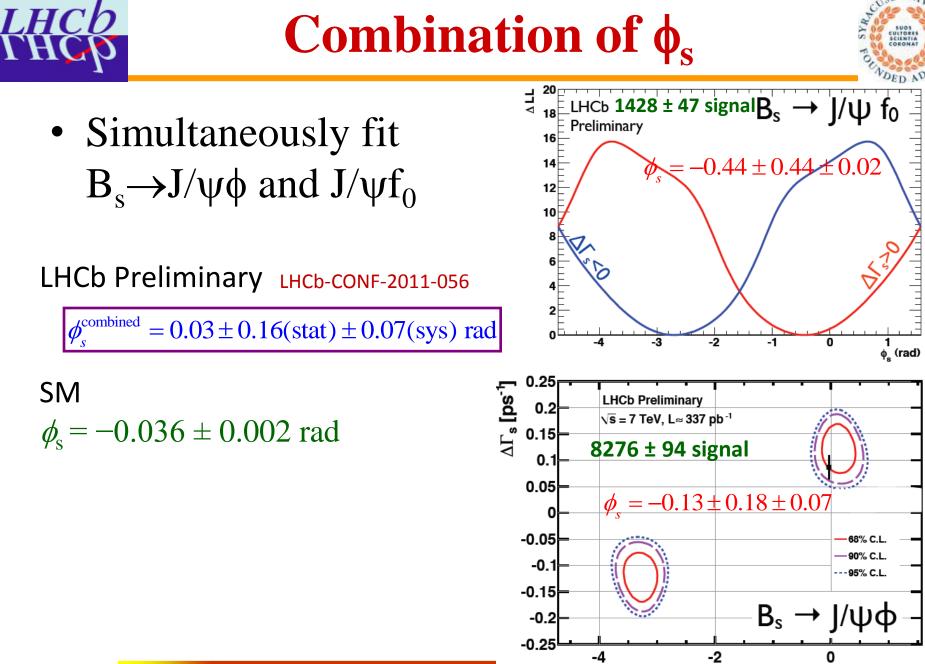






- Feb. 1, 2011 LHCb: "1st observation of *B<sub>s</sub>*→ J/ψ f<sub>0</sub>(980) decays" using 37pb<sup>-1</sup> [PLB, 698, 115(2011)]
- Here present the first use of this channel to measure  $\phi_s$

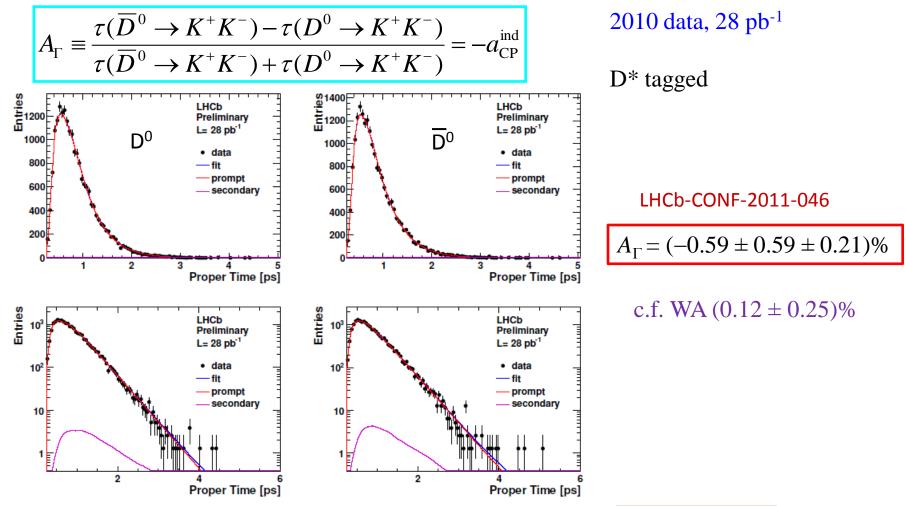


Angular distributions show the events in  $f_0(980)$  signal region consistent with pure S-wave => pure CP-odd eigenstate => no angular analysis needed.








10/20/2011





> SM predicts CPV in charm is  $\mathcal{O}(10^{-3})$ 

Measurement with higher rate would clearly signal new physics

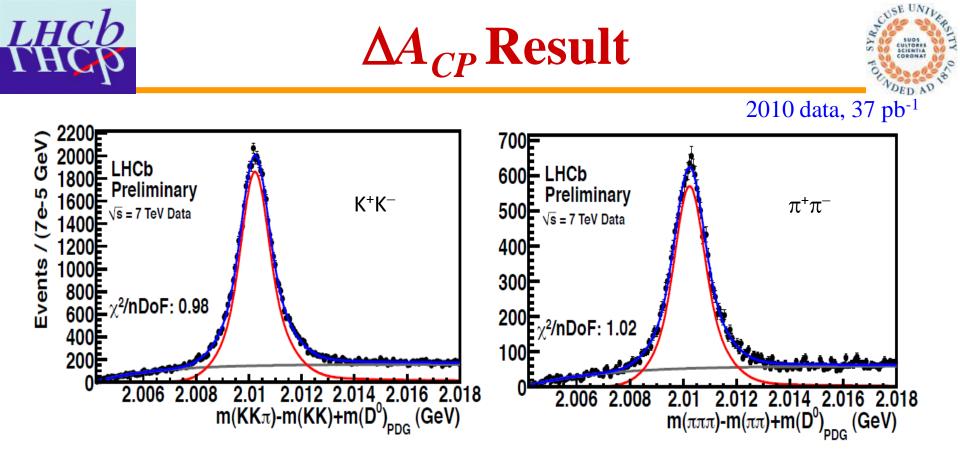








Time-integrated *CP* Asymmetry:


$$A_{CP}(f) \equiv \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to f)}{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to f)} \approx a_{CP}^{\text{dir}}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$
$$\Delta A_{CP} \equiv A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-}) = \Delta a_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

<t> is average proper time in selected sample, In this study,  $\Delta <t>/\tau \approx 0.1$ 

The raw yield asymmetry of  $D^*$  is sum of asymmetries from physical *CP*, Detection and Production

$$A_{RAW}(K^{+}K^{-})^{*} = A_{CP}(K^{+}K^{-}) + A_{D}(K^{+}K^{-}) + A_{D}(\pi_{s}) + A_{P}(D^{*})$$
$$A_{RAW}(\pi^{+}\pi^{-})^{*} = A_{CP}(\pi^{+}\pi^{-}) + A_{D}(\pi^{+}\pi^{-}) + A_{D}(\pi_{s}) + A_{P}(D^{*})$$

$$\Delta A_{CP} = A_{RAW} (K^{+}K^{-})^{*} - A_{RAW} (\pi^{+}\pi^{-})^{*}$$



The difference of raw yield asymmetries is calculated in 12 bins of  $D^*$  ( $p_T$ ,  $\eta$ ). Consistent numbers are seen. A weighted average is quoted.

 $\Delta A_{CP} = (-0.28 \pm 0.70 \pm 0.25)\%$ 

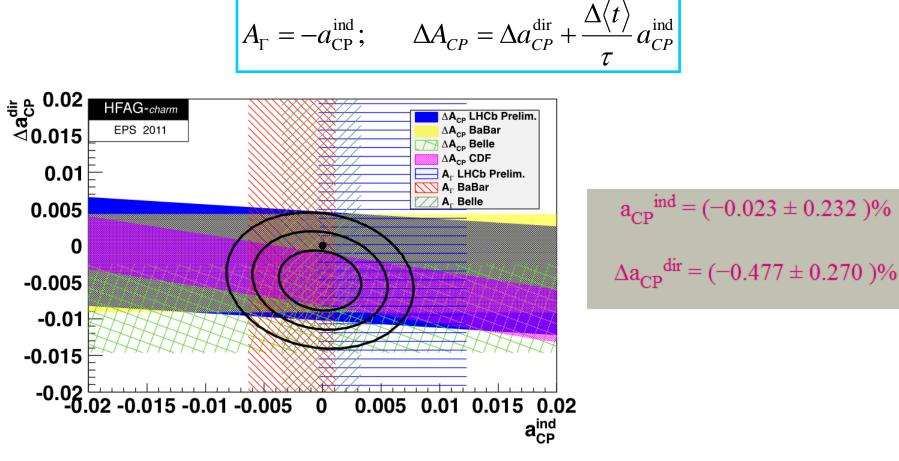
LHCb-CONF-2011-023

LHCb is updating the result with 25 times more statistics





- LHCb has made several world-best measurements of CPV in beauty.
- The measurements in charm used only 2010 data, we will significantly improve the results with 2011 data.
- No sign of New Physics yet, but will have large increases in data: 1 fb<sup>-1</sup> already collected in 2011, doubled in 2012 and then another factor of two after shutdown.






#### Backup

# *LHCb* **D<sup>0</sup> CPV in mixing and direct**





Data are consistent with no CPV at 20% CL.





$$\frac{\mathrm{d}^4\Gamma(B^0_s \to J/\psi\phi)}{\mathrm{d}t \,\mathrm{d}\cos\theta \,\mathrm{d}\varphi \,\mathrm{d}\cos\psi} \equiv \frac{\mathrm{d}^4\Gamma}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

| k  | $h_k(t)$                            | $f_k(	heta,\psi,arphi)$                                 |
|----|-------------------------------------|---------------------------------------------------------|
| 1  | $ A_0 ^2(t)$                        | $2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$      |
| 2  | $ A_{\parallel}(t) ^2$              | $\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$       |
| 3  | $ A_{\perp}(t) ^2$                  | $\sin^2\psi\sin^2\theta$                                |
| 4  | $\Im(A_{\parallel}(t)A_{\perp}(t))$ | $-\sin^2\psi\sin 2\theta\sin\phi$                       |
| 5  | $\Re(A_0(t)A_{\parallel}(t))$       | $\frac{1}{2}\sqrt{2}\sin 2\psi\sin^2\theta\sin 2\phi$   |
| 6  | $\Im(A_0(t) A_\perp(t))$            | $\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$     |
| 7  | $ A_s(t) ^2$                        | $\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$                 |
| 8  | $\Re(A_s^*(t)A_{\parallel}(t))$     | $\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$     |
| 9  | $\Im(A^*_s(t)A_{\perp}(t))$         | $\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$        |
| 10 | $\Re(A_s^*(t)A_0(t))$               | $\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$ |





$$|A_0|^2(t) = |A_0|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)\right],\tag{4}$$

$$|A_{\parallel}(t)|^{2} = |A_{\parallel}|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$
(5)

$$|A_{\perp}(t)|^2 = |A_{\perp}|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right],\tag{6}$$

$$\Im(A_{\parallel}(t)A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t}\left[-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) -\cos(\delta_{\perp}-\delta_{-\parallel})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m t)\right],$$
(7)

$$\Re(A_0(t)A_{\parallel}(t)) = |A_0||A_{\parallel}|e^{-\Gamma_s t}\cos(\delta_{\parallel} - \delta_0)\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s\sin(\Delta m t)\right],\tag{8}$$

$$\Im(A_0(t) A_{\perp}(t)) = |A_0| |A_{\perp}| e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_0) \sin \phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) -\cos(\delta_{\perp} - \delta_0) \cos \phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0) \cos(\Delta m t)], \qquad (9)$$

$$|A_s(t)|^2 = |A_s|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right], \tag{10}$$

$$\Re(A_s^*(t)A_{\parallel}(t)) = |A_s||A_{\parallel}|e^{-\Gamma_s t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)],$$
(11)

$$\Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s)\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s\sin(\Delta m t)\right],$$
(12)

$$\Re(A_s^*(t)A_0(t)) = |A_s||A_0|e^{-\Gamma_s t} \left[-\sin(\delta_0 - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)\right].$$
(13)

10/20/2011





| Source                            | $\phi_s^{J/\psi\phi}[\text{rad}]$ | $\Delta\Gamma_s [\mathrm{ps}^{-1}]$ |
|-----------------------------------|-----------------------------------|-------------------------------------|
| Description of background         | 0.06                              | 0.004                               |
| Angular acceptances               | 0.004                             | 0.008                               |
| z and momentum scale              | —                                 | 0.002                               |
| Production asymmetry $(\pm 10\%)$ | < 0.01                            | < 0.001                             |
| CPV in mixing & decay $(\pm 5\%)$ | < 0.03                            | < 0.006                             |
| Quadratic sum                     | 0.07                              | 0.011                               |

Table 4: Breakdown of the systematic uncertainties evaluated for  $\phi_s^{J/\psi \phi}$  and  $\Delta \Gamma_s$ 





| Systematic uncertainty                  | $A_{CP}(B^0 \to K\pi)$ | $A_{CP}(B^0_s \to \pi K)$ |
|-----------------------------------------|------------------------|---------------------------|
| PID calibration                         | 0.0012                 | 0.001                     |
| Final state radiation                   | 0.0026                 | 0.010                     |
| Signal model                            | 0.0004                 | 0.005                     |
| Combinatorial background model          | 0.0001                 | 0.009                     |
| 3-body background model                 | 0.0009                 | 0.007                     |
| Cross-feed background model (shift)     | 0.0009                 | 0.005                     |
| Cross-feed background model (smearing)  | 0.0006                 | 0.006                     |
| Instrumental and production asymmetries | 0.0078                 | 0.005                     |
| Total                                   | 0.0084                 | 0.018                     |

V





#### Summary of absolute systematic uncertainties for $\Delta A_{C\!P}$

| Effect                         | Uncertainty |
|--------------------------------|-------------|
| Modeling of lineshapes         | 0.06%       |
| $D^0$ mass window              | 0.20%       |
| Multiple candidates            | 0.13%       |
| Binning in $(p_{\rm T}, \eta)$ | 0.01%       |
| Total                          | 0.25%       |





#### Table 1: Summary of systematic uncertainties.

| Effect                     | $A_{\Gamma} (10^{-3})$ |
|----------------------------|------------------------|
| VELO length scale          | negligible             |
| Turning point bias         | negligible             |
| Turning point scaling      | $\pm 0.1$              |
| Combinatorial background   | $\pm 1.3$              |
| Proper time resolution     | $\pm 0.1$              |
| Minimum proper-time cut    | $\pm 0.1$              |
| Maximum proper-time cut    | $\pm 0.2$              |
| Secondary charm background | $\pm 1.6$              |
| Total                      | $\pm 2.1$              |