ATLAS Searches for New Physics with an *eµ* Final State

Dan Pomeroy Brandeis University On behalf of the ATLAS Collaboration October 20, 2011

Motivation for eµ Searches

- Historically important in discoveries:
 - Tau lepton at SPEAR
 - Top quark at Tevatron
- Final state has a clean detector signature and low backgrounds
- Neutrino oscillations show that lepton flavor conservation is not absolute
- eµ final states are predicted by a number of extensions to the standard model
 - R-parity violating supersymmetry (RPV SUSY)
 - Extra gauge boson (Z') with lepton flavor violating interactions

ATLAS Detector

- A multi-purpose particle physics apparatus with a forward-backward symmetric cylindrical geometry
- Near 4π coverage in solid angle
- Inner detector
 - Surrounded by a superconducting solenoid providing a 2 T magnetic field
- Electromagnetic Calorimeter
 - Reconstructs electrons with |η|
 < 2.5
- Muon spectrometer

20-10-11

Event Selection

- Total integrated luminosity: 1.07 ± 0.04 fb
- Passes a single lepton (e or μ) trigger
 - Trigger efficiency 100%
- At least 1 primary vertex with at least 3 tracks whose $p_T > 500 \text{ MeV}$
- Require exactly 1 e and 1 µ with:
 - Opposite charge
 - p_T > 25 GeV
 - η within the fiducial region of the detector
 - Isolated

Backgrounds

- Physics
 - Drell Yan $(Z/\gamma^* \rightarrow \tau \tau)$
 - $t\bar{t}$
 - Single Top (W t)
 - Diboson
 (WW, WZ, ZZ)
- "Instrumental"
 - QCD (dijets)
 - W/Z + jets
 - W/Z + γ

- All physics backgrounds modeled with Monte Carlo simulation
 - Detector response simulated with GEANT4
- Lepton identification efficiencies, energy scales and resolutions are corrected to match data
- QCD and W/Z + jets are estimated from data using a data driven method
- W/Z + γ modeled with MC

Systematics

Source	Fractional uncertainty (%)	Relations with backgrounds	Relation with signal	
Luminosity	3.7%	related to all bkg samples	related	
Trigger efficiency	1%	related to all bkg samples	related	
Electron reco and ID efficiency	2%	related to all bkg samples	related	
Muon reco and ID efficiency	1%	related to all bkg samples	related	
$Z/\gamma^* \to \tau \tau$ cross section	5%	related to $Z/\gamma^* \to \tau \tau$ sample	unrelated	
ZZ cross section	5%	related to ZZ sample	unrelated	
WW cross section	7%	related to WW sample	unrelated	
WZ cross section	7%	related to WZ sample	unrelated	
$t\bar{t}$ cross section	10%	related to $t\bar{t}$ sample	unrelated	
Wt cross section	9%	related to Wt sample	unrelated	
$W\gamma$ cross section	10%	related to $W\gamma$ sample	unrelated	
$Z\gamma$ cross section	10%	related to $Z\gamma$ sample	unrelated	

- Also studied and found to be negligible:
 - Electron energy scale and resolution
 - Muon momentum scale and resolution

Results after Event Selection

- Data is consistent with expected standard model background
- Results used to set limits on two possible new physics signals
 - Sneutrino production in R-parity violating SUSY
 - Lepton flavor violating vector particles (Z')

R-parity Violating (RPV) SUSY

- R = (-1)^{3B+L+2S}
 - B is Baryon Number
 - L is Lepton Number
 - S is Spin Number
- No reason to assume R is conserved
- General RPV Superpotential:

 $\mathcal{W}_{k_p} = \frac{1}{2} \varepsilon_{ab} \lambda_{ijk} \hat{L}^a_i \hat{L}^b_j \hat{E}_k + \varepsilon_{ab} \lambda'_{ijk} \hat{L}^a_i \hat{Q}^b_j \hat{D}_k + \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \lambda''_{ijk} \hat{U}^{\alpha}_i \hat{D}^{\beta}_j \hat{D}^{\gamma}_k + \varepsilon_{ab} \mu_i \hat{L}^a_i \hat{H}^b_2$

LLE and LQD lead to:

RPV SUSY

- Search is performed under the following assumptions:
 \$\vec{\mathcal\}\mathcal{\mathcal{\mathca\}\mathcal\}\mathcal\}\mathcal{\math
 - All RPV couplings except λ'_{311} and $\lambda_{312} = \lambda_{321}$ are zero
- Cross section depends only on snuetrino mass (M) and couplings:

 $\hat{\sigma}_{e\mu} \propto (\lambda'_{311})^2 \times (\lambda_{312})^2 \cdot \frac{1}{|\hat{s} - M^2 + i\Gamma M|^2}$

- For this analysis couplings are set to current limits:
 λ'₃₁₁ = 0.11
 λ₃₁₂ = λ₃₂₁ = 0.07
- Current limits obtained from measurements of tau lepton branching ratios at low energy

Lepton Flavor Violating Z'

- One well motivated extension to the SM is the addition of an extra U(1) gauge symmetry leading to a neutral gauge boson (Z')
- We use a Sequential Standard Model Z'
 - Assumes Z' to have the same couplings as Z
 - Add a coupling (Q^I₁₂) which couples Z' to eµ

• Z' cross section: $\sigma(Z' \to l_i^- l_j^+) = \frac{g_z^2}{4\pi} \frac{(Q_{ij}^l)^2}{144} \frac{M^2}{(M^2 - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}$

- µ -> eee experiments have set stringent limits on Q^I₁₂
- We use Z' as benchmark to place limits on a spin-1 particle which can decay to eµ

Limits

 We perform a simple counting experiment using Bayesian analysis and a flat prior.

Conclusion

- A search has been performed for high mass eµ events using the ATLAS detector.
- The observed m_{eµ} distribution is consistent with standard model predictions
- 95% C.L exclusions are placed on:
 - RPV coupling values of the tau sneutrino
 - Tau sneutrino mass below 1.32 (1.45) TeV assuming $\lambda'_{311} = 0.10$ and $\lambda_{312} = \lambda_{321} = 0.05$ ($\lambda'_{311} = 0.11$ and $\lambda_{312} = \lambda_{321} = 0.07$)
 - Production cross section of lepton flavor violating spin-1 particle

Current and Future Work

RPV SUSY can also lead to the production of eµ pairs through t-channel exchange:

- Non-resonant production leads to a continuum distribution in the invariant mass distribution
- A simple invariant mass cut does not separate signal from background
- A multivariate technique is being developed to provide better separation power

Backup Slides

20-10-11

Matrix Method

- Define a "loose" and "tight" selection for both electrons and muons.
- "Loose" electron sample:
 - Require only isEM_loose
 - Do not require isolation (EtCone40 < 10 GeV)
- "Loose" muon sample:
 - Do not require isolation (PtCone40 < 10 GeV)</p>
- Measure efficiencies of real muons (electrons) to pass tight selection using Z-> μμ (ee) data samples.
- In dijet samples look for jets which pass loose lepton selection, measure efficiency of tight selection.

Matrix Method

$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LT} \end{bmatrix}$	=	$\begin{bmatrix} r_e r_\mu \\ r_e (1 - r_\mu) \\ (1 - r_e) r_\mu \\ (1 - r_e) (1 - r_\mu) \end{bmatrix}$	$r_e f_\mu$ $r_e (1 - f_\mu)$ $(1 - r_e) f_\mu$ $(1 - r_e) (1 - f_\nu)$	$f_e r_\mu$ $f_e (1 - r_\mu)$ $(1 - f_e) r_\mu$ $(1 - f_e) (1 - r_\mu)$	$f_e f_\mu$ $f_e (1 - f_\mu)$ $(1 - f_e) f_\mu$ $(1 - f_e) (1 - f_e)$	$\begin{vmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FR} \end{vmatrix}$
$[N_{LL}]$		$[(1-r_e)(1-r_\mu)]$	$(1 - r_e)(1 - f_\mu)$	$(1 - f_e)(1 - r_\mu)$	$(1 - f_e)(1 - f_\mu)$	$\lfloor N_{FF} \rfloor$

- **r**_e (r_{μ}) efficiency of tight selection for real electrons (muons)
- $f_e(f_{\mu})$ efficiency of tight selection for jets faking electrons (muons)
- N_{TT} Number of events in final selection passing tight electron and muon requirements
- N_{TL} (N_{LT}) Number of events in loose selection passing tight electron (muon) selection but failing tight muon (electron) selection.
- N_{LL} Number of events passing the loose electron and muon selection and failing tight selection.
- N_{RR} Number of events with a real electron and real muon
- N_{RF} (N_{FR}) Number of events with a real electron (muon) and fake muon (electron)
- N_{FF} Number of events with a fake electron and fake muon.

Matrix Method

$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LT} \end{bmatrix}$	=	$\begin{bmatrix} r_e r_\mu \\ r_e (1 - r_\mu) \\ (1 - r_e) r_\mu \\ (1 - r_e) (1 - r_\mu) \end{bmatrix}$	$r_e f_\mu$ $r_e (1 - f_\mu)$ $(1 - r_e) f_\mu$ $(1 - r_e) (1 - f_\nu)$	$f_e r_\mu$ $f_e (1 - r_\mu)$ $(1 - f_e) r_\mu$ $(1 - f_e) (1 - r_\mu)$	$f_e f_\mu$ $f_e (1 - f_\mu)$ $(1 - f_e) f_\mu$ $(1 - f_e) (1 - f_e)$	$\begin{vmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FR} \end{vmatrix}$	
$[N_{LL}]$		$[(1-r_e)(1-r_\mu)]$	$(1 - r_e)(1 - f_\mu)$	$(1-f_e)(1-r_\mu)$	$(1 - f_e)(1 - f_\mu)$	$][N_{FF}]$	J

- Invert the matrix and solve for the number of fake events in data.
- Use this to determine the probability that a data event is fake.
- Make a new "instrumental" background which is the data weighted event by event with the probability that it is fake.
- Do this all in bins of muon p_T because f_µ varies significantly with p_T. All other efficiencies mostly flat in p_T.