DISCOVERING HIGGS IN SUSY GUTS WITH TAU LEPTONS AT LHC

Kesheng Yang (In collaboration with Prof. C. Kao) Homer L. Dodge Department of Physics University of Oklahoma

MSSM Higgs searches from ATLAS and CMS

⁽ATLAS-CONF-2011-132)

⁽CMS-PAS-HIG-11-009)

Higgs Searches in the MSSM

> Higgs production associated with one b jet, and Higgs decay into $\tau^+\tau^-$ pairs.

- One b jet in the final state is helpful to handle the fake jets by applying b tagging technique.
- Neutral scalar ϕ could be h, H or A.

✤ In low mass region, $m_h \sim m_A$. If $|m_h - m_A| < 10\% m_A$, we add the contribution from *h* together with that from pseudo scalar.
♠ In high mass region, $m_H \sim m_A$, If $|m_H - m_A| < 10\% m_A$, we put

the contribution from htogether with that from pseudo scalar.

• Scalars predominantly decay to $b\overline{b}$ (~90%), and $\tau^+\tau^-$ (~10%).

• The biggest decay mode of tau pairs is one into hadronic jet with the other into electron or muon.

 $BF(\tau \rightarrow \pi / \rho / a_1) = 54.77\%$ $BF(\tau \rightarrow e / \mu) = 35.20\%$ (PDG)

• One final lepton helps to remove huge QCD background.

> Reconstruction of scalar mass.

•
$$(\frac{1}{x_l} - 1)P_T^l + (\frac{1}{x_h} - 1)P_T^h = P_T$$

• $P_{\tau^1} = \frac{P_l}{x_l}$ $P_{\tau^2} = \frac{P_h}{x_h}$
• $M_{\tau\tau} = \sqrt{(P_{\tau^1} + P_{\tau^2})^2}$

D. Rainwater, D. Zeppenfeld and K. Hagiwara(1998)

Chung Kao, Duane A. Dicus, Rahul Malhotra and Yili Wang(2008) > Total cross section of signal.

$$\sigma_{tot} = \int (f_b (\xi_1, \mu_F) f_g (\xi_2, \mu_F) + f_b (\xi_2, \mu_F) f_g (\xi_1, \mu_F) f_g (\xi_2) \rightarrow b\phi \rightarrow b\tau^+ \tau^-)$$

$$\times 2 \times 2BF(\tau \rightarrow l)BF(\tau \rightarrow j_\tau)$$

• Five flavor parton distribution function: CETQ6L1

• Factorization scale:
$$\mu_F = \frac{M_{\phi}}{4}$$

• Renormalization scale: $\mu_R = \frac{M_{\phi}}{4}$

Background processes.

Drell-Yan processes:

 $q/\bar{q}g \rightarrow q/\bar{q}Z^*/\gamma^* \rightarrow q/\bar{q}\tau^+\tau^- \qquad (q=u,d,s,c)$

• To include the higher order correction, *K* factor is chosen to be *1.3*.

• $t\bar{t}$ production:

- $j_1 j_2$ are quark and anti-quark pair form W decay.
- K = 2.0
- *tW*production:

• *K*=1.5

• The production of $j_1 j_2 W$ and b j W are negligible.

 \succ Acceptance cuts.

$$\begin{split} \sqrt{s} &= 14 \, TeV & \sqrt{s} = 7 \, TeV \\ \int Ldt &= 30 \, fb^{-1} & \int Ldt = 300 \, fb^{-1} & \int Ldt = 10 \, fb^{-1} & \int Ldt = 10 \, fb^{-1} \\ P_T(b) &> 15 \, GeV & P_T(b) > 30 \, GeV & P_T(b) > 15 \, GeV \\ \not E_T &> 20 \, GeV & \not E_T > 40 \, GeV & E_T > 20 \, GeV \\ \left| M_{\tau\tau} - M_{\phi} \right| < 0.15 \, M_{\phi} & \left| M_{\tau\tau} - M_{\phi} \right| < 0.20 \, M_{\phi} & \left| M_{\tau\tau} - M_{\phi} \right| < 0.15 \, M_{\phi} \end{split}$$

$$\begin{split} P_{T}(l) &> 20 GeV \ P_{T}(j_{\tau}) > 40 GeV \\ \eta(b) &< 2.5 \qquad \eta(l) < 2.5 \qquad \eta(j_{\tau}) < 2.5 \\ \Phi(l, j_{\tau}) &< 170^{\circ} \quad \delta R(l, j_{\tau}) > 0.3 \ M(l, \not E_{T}) < 30 GeV \end{split}$$

• One more set of cuts is required by the physical meaning of energy fraction.

$$0 < x_l < 1 \quad 0 < x_h < 1$$

> Tagging efficiency and mistagging efficiency.

$$\sqrt{s} = 14TeV \qquad \sqrt{s} = 7TeV$$

$$\int Ldt = 30fb^{-1} \qquad \int Ldt = 300fb^{-1} \qquad \int Ldt = 1fb^{-1} \qquad \int Ldt = 10fb^{-1}$$

$$\varepsilon_{b} = 60\% \qquad \varepsilon_{b} = 50\% \qquad \varepsilon_{b} = 50\%$$

$$\varepsilon_{b} = 50\% \qquad \varepsilon_{b} = 50\%$$

$$\varepsilon_{l_{\tau}} = 26\%$$

$$P_{g,u,d,s\to b} = 1\% \quad P_{c\to b} = 10\% \quad P_{u,d,c,s\to j_{\tau}} = 1/400 \quad P_{b\to j_{\tau}} = 1/600$$

> Criterion for the observability of some signal .

$$\sigma_s > \frac{N^2}{L} \left(+ 2\sqrt{L\sigma_b} / N \right)$$

• N = 2.5 corresponds to 5σ .

 P_T distribution without any cuts.

 \succ

 $\succ \sigma \sim m_A$

> Signal significance.

$M_A(GeV)$	100	200	400	800
$\sigma_s(tan\beta = 10)$	4.38	7.28	7.14×10^{-1}	2.09×10^{-2}
$\sigma_s(tan\beta = 50)$	9.75×10^1	1.61×10^2	1.81×10^1	6.02×10^{-1}
σ_s (Drell-Yan)	1.41×10^1	4.27×10^{-1}	4.32×10^{-2}	1.99×10^{-3}
$\sigma_s(b\bar{b}W^+W^-)$	3.41×10^{-1}	1.10	6.75×10^{-1}	1.04×10^{-1}
$\sigma_s(bW^+W^-)$	2.30×10^{-1}	7.25×10^{-1}	4.13×10^{-1}	5.16×10^{-2}
$\sigma_s(Wjj)$	1.07×10^{-1}	4.83×10^{-1}	4.40×10^{-1}	1.21×10^{-1}
$N_{ss}(tan\beta = 10)$	6.24	24.1	3.12	0.217
$N_{ss}(tan\beta = 50)$	139	533	79.1	6.25

TABLE I: MSSM Higgs Production at $\sqrt{s} = 14TeV$ and $\mathcal{L} = 30fb^{-1}$

TABLE II: MSSM Higgs Production at $\sqrt{s}=14TeV$ and $\mathcal{L}=300 fb^{-1}$

$M_A(GeV)$	100	200	400	800
$\sigma_s(tan\beta = 10)$	1.34	2.83	5.21×10^{-1}	1.74×10^{-2}
$\sigma_s(tan\beta = 50)$	3.08×10^1	6.40×10^1	1.37×10^1	5.19×10^{-1}
σ_s (Drell-Yan)	6.97	2.64×10^{-1}	4.98×10^{-2}	2.84×10^{-3}
$\sigma_s(b\bar{b}W^+W^-)$	2.91×10^{-1}	1.39	1.35	2.55×10^{-1}
$\sigma_s(bW^+W^-)$	8.09×10^{-2}	4.00×10^{-1}	3.61×10^{-1}	5.78×10^{-2}
$\sigma_s(Wjj)$	2.31×10^{-2}	2.06×10^{-1}	3.13×10^{-1}	1.04×10^{-1}
$N_{ss}(tan\beta = 10)$	8.55	32.6	6.27	0.465
$N_{ss}(tan\beta = 50)$	197	737	165	13.9

\succ 5 σ discovery contour.

Several Experimental Constrains

$$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$$

$$BF(B_{s}^{0} \rightarrow \mu^{+} \mu^{-})^{\text{SM}} = (3.2 \pm 0.2) \times 10^{-9}$$
A. J. Buras arXiv:1012.1447v2
$$BF(B_{s}^{0} \rightarrow \mu^{+} \mu^{-})^{\text{EXP}} < 1.08 \times 10^{-8}$$
95% C.L. LHCb-CONF-2011-047
$$b \rightarrow s \gamma$$

$$BF(b \rightarrow s \gamma)^{\text{SM}} = (2.98 \pm 0.26) \times 10^{-4}$$
Becher & Neubert (2007)
$$= (3.15 \pm 0.23) \times 10^{-4}$$
Misiak et al. (2007)
$$BF(b \rightarrow X_{s} \gamma)^{\text{EXP}} = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$$
Wenfeng Wang (2011)
$$\Delta a_{\mu}$$

$$a_{\mu}^{\text{EXP}} = 116592089(6.3) \times 10^{-10}$$
PDG (2010)
$$T. \text{ Teubner (2010)}$$

$$\Delta a_{\mu} \equiv a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM} = (25.9 \pm 8.1) \times 10^{-10}$$

Gi-Chol Cho, Kaoru Hagiwara, Yu Matsumoto and Daisuke Nomura (2011)

mSUGRA Higgs Discovery Potential

> SUSY breaking happens in a hidden sector, and is mediated to visible sector by a messenger, gravity.

> mSUGRA/CMSSM assumes unified scalar mass m_0 , fermionic mass $m_{1/2}$ and trilinear coupling A_0 at GUT scale. These are free inputs.

> In addition, two more parameters are defined at low-energy scale, $\tan \beta$ and $sign(\mu)$.

➢ RGEs evolve from GUT scale down to EW scale, and then generate particle spectrum at EW scale.

Isajet 7.81 (H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata)

> The following parameter space will be scanned.

$$m_{1/2} \in [0,2000] \, GeV, \quad m_0 \in [0,25000] \, GeV, \quad \tan \beta \in [20,50]$$

 $A_0 = 0 \, GeV, \quad sign(\mu) = 1$
 $m_{top} = 173.1 \, GeV$

M_{1/2}(GeV)

mAMSB Higgs Discovery Potential

> SUSY breaking happens in a separate brane, and is mediated to visible sector by super-Weyl anomaly.

> The parameter space is formed by four parameters.

 $\{m_{3/2}, m_0, \tan\beta, sign(\mu)\}$

> The scanned parameter space

 $m_{1/2} \in [20000, 100000], m \in [0, 2000], \tan \beta \in [20, 50]$ $sign(\mu) = 1$ $m_{top} = 173.1 GeV$

14 TeV

7 TeV

➢ It's promising to discover Higgs by tau lepton pairs, even with Higgs mass up to 1 TeV at LHC.

> In mSUGRA, the model with high $\tan \beta$ favors the discovery of Higgs.

> In mAMSB, the model with intermediate $\tan \beta$ favors the discovery of Higgs.

➢ GMSB and related channels will be added.