

Diagnostics Tools to Optimize the Injection Efficiency

M. Alvarez, ALBA Synchrotron WAO 2018 30/09 - 05/10

OUTLINE

- Introduction
- Project description
- Applications in routine operation
- Conclusion

ALBA Synchrotron:

- → 3rd Generation Synchrotron Light Source
- → 3 GeV Storage Ring of 270m
- → Operating since 2012
- → 8 BLs fully operative + 4 in construction
- → Location: Barcelona (Spain)

SYNCHROTRON LIGHT SOURCES

- Designed to deliver stable photon beams for users
- → Typical operation mode: <u>TOP-UP</u>
- → Some BLs cannot use the data collected during injections

It is desirable to shorten the injections

The operators try to keep the injection efficiency up

INJECTION EFFICIENCY

→ Main issue since top-up operation: BTS Transmission

- Presented large oscillations
- BTS Optimized by trial-and-error
- Time consuming for the operators
- Drifts of the settings along a run

Operations Section started a new project

Goals
 Define a standard procedure to optimize the BTS transmission in operation
 Improve the BTS transmission

- 1. Improve the Beam Instrumentation performance
 - Beam Diagnostics group
- 2. Define a "golden trajectory" along the BTS
- - 4. Develop a high level software to monitor the BTS
 - Operations Section

Booster To Storage Ring Transfer Line

1.- DIAGNOSTICS IMPROVEMENTS

→ BPMs upgrade:

→ Replacement of the Libera Brilliance (multi-turn) electronics by Libera Spark units designed for single pass beams

→ SRMs upgrade:

→ Design of a new mechanical support of the optical system

2.- BTS GOLDEN TRAJECTORY

→ Defined performing manual BBAs at the BTS

→ Reproducible by using the non-destructive diagnostics

	Design.	11/9/16	5/6/17 start	5/6/17 end
Kiext (V)	-	25250	26350	25600
SRM xpos (mm)	8.1	7.8	8.0	7.8
FSH xpos (mm)	17.8	17.5	18.2	17.8
Septum (V)	-	426.4	425.3	425.0

3.- PULSED MAGNETS MONITORING

→ Amplitude and timing monitored using a scope and ADCs cards

→ BO extr and SR inj pulsed magnets readback become very useful in the control room

4.- HIGH LEVEL SOFTWARE TOOLS DEVELOPED BY THE OPERATORS

- A) A python script is continuously running during BL operation
- → It provides:
 - → Control of the BTS SRMs ccds
 - → Shot-to-shot data from the injections archived in daily hdf5 files
 - → On-line post-processing of the injection data available as Tango Dynamic Attributes

4.- HIGH LEVEL SOFTWARE TOOLS

- B) 2 other scripts provide read backs from the pulsed elements as Tango Dynamic Attributes
- C) A GUI developed in python (based on QT and Taurus) integrates all the information to operate the injector

4.- HIGH LEVEL SOFTWARE TOOLS

APPLICATIONS IN ROUTINE OPERATION

- 1. **BTS horizontal alignment** during machine start-ups following the new standard procedure which is available in the *opwiki*
 - ✓ Booster extraction adjustment scanning the kicker and septum to reproduce the "golden positions" at the BO/SRM and BT-SRM-1
 - ✓ Injection efficiency optimization by scanning the SRseinj, BO-RF extraction phase.
 - ✓ If needed, scan:
 - The horizontal position at SRseinj with the last 2 correctors
 - > The injection angle with the SRseinj

2. <u>Transmission</u> recovery during operation

- → Injection efficiency vs. beam position at BO extraction and BTS during 6h of top-up operation.
- → The efficiency drop is recovered by changing the setpoint of the →extraction septum.

09/05/2017	16h53	17h13	17h53
Bo2Sr eff	88 %	64 %	87 %
BO-seext	425 Vsp	425 Vsp	424 Vsp
BT-SRM-1 Xpos	10.9 mm	9.0 mm	10.7 mm
BT-SRM-1 ROI img		magnine	

→ This table was elaborated from our archived data and corresponds to the same example than the previous plot

CONCLUSION

- ✓ We found a stable and reproducible BTS hor trajectory
- BTS transmission improved
- The operators have now improved tools to optimize and keep the injection efficiency up
- The operators have increased our understanding of the BTS dynamics and instrumentation

ACKNOWLEDGEMENTS

This project would have not been possible without the collaboration of:

- ✓ Beam Physics and Diagnostics Section: U. Iriso,
 G. Benedetti, A. Olmos, A. Nosych and X. Rodriguez
- ✓ Pulsed Magnets Experts: M. Pont and N. Ayala
- Controls and Computing Section
- Operators Group

MANY THANKS FOR YOUR ATTENTION!

QUESTIONS?