Jet Measurements in pp collisions

Benjamin Nachman Lawrence Berkeley National Laboratory

Jetscape 2018

Disclaimer: I have not attempted to have an equal balance across experiments. In many cases, there are analogous results from other collaborations. I can provide references upon request.

First: What is a measurement?

Hint: Only one of these is a measurement ...

First: What is a measurements measurement of the second se

N.B. I won't say more about ML in this talk ... always happy to discuss though! We also hosted a recent <u>ML4Jets workshop at LBNL</u>.

First: What is a measurements measurement of the second se

First: What is a measurement?

First: What is a measurements measurement of the second se

First: What is a measurement?

First: What is a measurement?

- correct for detector effects.
- aiming for O(%) uncertainties.
- goal: constrain the SM, probe it in a new regime, and/or provide input for MC/PDF tuning/fitting.

There are many measurements **with** jets, but I'll focus on measurements **of** jets and their internal structure

These are40 measurements!

Jet Measurements

Part I: Jet Multiplicity and Energies

Data 2012

Pvthia8

····· Herwig++

---- Sherpa

Part II: Event Shapes

0

0.2

0.4

0.6

0.8

cos 🗄

Ð

10

ATLAS Preliminary

 $\sqrt{s} = 8 \text{ TeV}$; 20.2 fb⁻¹

anti-k, jets R = 0.4

H_{T2} > 1400 GeV

-0.6 -0.4 -0.2

 $(1/\sigma) d\Sigma/d(\cos$

10

10

MC / Data

0.5

-0.8

Part I: Jet Multiplicity and Energies

Reach: ~2 TeV @ 20.3 fb⁻¹

~3 TeV @ 3.2 fb⁻¹

Inclusive anti-*k*^t Jet Cross-Sections

(binned in rapidity, y)

NLO is accurate over many orders of magnitude

Part I: Inclusive Jet Cross-sections

1711.02692 1706.03192 Run 2 already reaching/surpassing 8 TeV precision! very important for probing proton structure, in particular the gluon PDF JES = jet energy scale (bias) JER = jet energy resolution (standard deviation) Relative uncertainty 5.1 7 7 9.1 9 Systematic Uncertainty (relative to nominal 1.6 Total systematics JES JES + JER 1.5 ATLAS Preliminary Other JES Statistics 1.4 **13 TeV** JER 1.3 8 TeV 0.0 < |y| < 0.51.2 1:1 1 -0.9ATLAS preliminary 0.8 0.8 √s= 8 TeV, 20.3 fb⁻¹ 0.7 anti-k, R= 0.4 |v| < 0.50.6 0.6 $10^{\overline{3}}$ 2×10 2×10 70 10² 2×10² 10³ 2×10^{3} p_ [GeV] [GeV

Run 2 already reaching/surpassing 8 TeV precision!

very important for probing proton structure, in particular the gluon PDF

- important input to high-x gluon PDF - can be used to extract as (calculations now at NNLO so can even make the PDG!)

We are probing a regime where NP effects are negligible.

(LO diagrams)

Part I: EW Corrections

In fact, real EW emissions are measurable!

Not well-modeled by all setups, including dedicated weak shower

Part II: Event Shapes

with energy-energy correlations 15

(defined as dimensionless cross-section)

Part II: Event Shapes

consistent with other pp jet extractions

The radiation pattern inside jets probes a different regime of QCD

The most basic of all observables is particle multiplicity

Charged particle tracks are our proxy for particles

*At LL, this is actually <u>all</u> that distinguishes q/g

Multiplicity scales with the color charge (C_F/C_A) : useful for distinguishing q/g^* !

Charged-particle Multiplicity

We can use (jet) kinematic information to extract separate q/g jet substructure

$$\langle n_{\text{charged}}^{\text{f}} \rangle = f_{q}^{\text{f}} \langle n_{\text{charged}}^{q} \rangle + f_{g}^{\text{f}} \langle n_{\text{charged}}^{g} \rangle$$
$$\langle n_{\text{charged}}^{\text{c}} \rangle = f_{q}^{\text{c}} \langle n_{\text{charged}}^{q} \rangle + f_{g}^{\text{c}} \langle n_{\text{charged}}^{g} \rangle$$

from PDF ⊕ IVIE

q/g multiplicity separately measured by exploiting rapidity (for a fixed p_T, quark jets tend to be more forward)

Charged-particle Multiplicity

Even though it is not IRC-safe, it is still possible to estimate the p⊤-dependence in pQCD.

Interestingly, we find a better description of the data by increasing the FSR α_s (but this creates tension with LEP tuning)

Jet Charge

Next: weight the tracks .. start with their charge!

$$Q_{J} = \frac{1}{(p_{TJ})^{\kappa}} \sum_{i \in \mathbf{Tracks}} q_{i} \times (p_{T,i})^{\kappa}$$

Allows us to look inside the proton "by eye" - more up quarks at high x!

Jet Charge Beyond PDFs

What happens when we 'remove' the PDF? Does the jet charge for jets of a particular type depend on p_{τ} ?

$$\langle Q_J \rangle = [1 + \mathcal{O}(\alpha_s)] \sum_h Q_h \widetilde{D}_q^h(\kappa, E \times R)$$

h = hadron

Prediction: c < 0 and $dc/d\kappa < 0$

non-perturbative...but we know how it evolves with scale!

Moment of a

fragmentation function

$$\frac{p_{\rm T}}{\langle Q_{\kappa} \rangle} \frac{d}{dp_{\rm T}} \langle Q_{\kappa} \rangle = \frac{\alpha_s}{\pi} \widetilde{P}_{qq}(\kappa) \equiv c(\kappa)$$

$$f$$
Moment of a
splitting function

(scale violation)

Jet charge per flavor: extraction

$$\langle Q_i^{\text{forward}} \rangle = \left(f_{\text{up},i}^{\text{forward}} - f_{\text{anti-up},i}^{\text{forward}} \right) Q_i^{\text{up}} + \left(f_{\text{down},i}^{\text{forward}} - f_{\text{anti-down},i}^{\text{forward}} \right) Q_i^{\text{down}}$$

$$\langle Q_i^{\text{central}} \rangle = \left(f_{\text{up},i}^{\text{central}} - f_{\text{anti-up},i}^{\text{central}} \right) Q_i^{\text{up}} + \left(f_{\text{down},i}^{\text{central}} - f_{\text{anti-down},i}^{\text{central}} \right) Q_i^{\text{down}}$$

Can exploit the η -dependence of the flavor fractions *f* to extract the **up**- and **down**-quark jet charge in each p_T bin.

Up Jets, $\kappa = 0.3$

Up Jets, $\kappa = 0.5$

Up Jets, $\kappa = 0.7$

syst

Jet charge per flavor: p_T dependence

Fully Perturbative: Jet Mass

24

Soft-drop Jet Mass

Last measurement: colorflow

The jet pull angle measures how much the radiation pattern from one jet leans toward another.

Just to show that there is still work to do!

New Tools

The "vacuum" jet program is probing all aspects of the rich structure of QCD

There are exciting new opportunities in the near future; in particular with tracking inside jets!

More: track-assisted jet substructure, Track-Calo Clusters Even more:

constituent-based pileup subtraction.

New Tools: Constituent pileup subtraction

Precision jet (substructure) at the LHC and HL-LHC will require better pileup mitigation.

28

Many studies on-going to optimize/improve our algorithms. This is a very active area in pp!

many of these also (will also) work for HI...

The future

We have big ambitions ... the fun times have just begun!

I. Moult, **BPN**, G. Soyez, J. Thaler, et al. (Les Houches Jet WG 2017)

Questions?

pı

Run: 302347 Event: 753275626 2016-06-18 18:41:48 CEST

Jet Cross-sections

Jet Energy Scale Uncertainty

NP and EW corrections for inclusive jet cross-section 34

We are probing a regime where NP effects are negligible.

But electroweak corrections are not small!

By construction, designed to be less sensitive to JES

35

(~5% for the xs measurement for comparable energy)

More sensitive in the middle to do softer gluon radiation

Part II: Running of the coupling

Part III: Multiplicity Extraction Closure

Closure Test

- More central jet (inclusive)
- □ More central jet (gluons)
- ▼ More central jet (quarks)

Quarks (extracted)

More forward jet (inclusive)
 O More forward jet (gluons)
 △ More forward jet (quarks)
 ★ Gluons (extracted)

Part III: Multiplicity with various UE tunes

As part of this effort, we have also studied UE tuning

The ATLAS A14 tune is a better model than the Pythia 8 default (Monash) and the ATLAS AZNLO tune used for many Higgs analyses

This is a key challenge for the Hep-ex and Hep-ph communities!

