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Designing the Training Points - Latin Hypercube

Latin Hypercube Design

I Ensures that there is only one design point in each row and column

I Every design point is in exactly one “bin” for each dimension

1

1
https://upload.wikimedia.org/wikipedia/commons/f/fb/LHSsampling.png
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Designing the Training Points - Latin Hypercube

Exercise

I Create a Latin Hypercube design of 20 points in 2 dimensions

I Plot the result
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Training and Validating GP Emulators
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Training and Validating GP Emulators GP Introduction

GPs In Action

Prediction = mean + uncertainty

The gray bands are 95% confidence intervals.
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Training and Validating GP Emulators GP Introduction

What is a GP?

Technical Terms: A Gaussian Process (GP) is a stochastic process Y
indexed by x ∈ X such that realizations are jointly Multivariate Normal.

Ok, but what does that mean?

I If given x1, . . . xn locations, we can find the joint distribution for
outputs (Y (x1), . . .Y (xn)) - and it’s Multivariate Normal

I Our function Y () is random, but we can make guesses based on input
x and other observed values of Y .
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Training and Validating GP Emulators GP Introduction

Some Housekeeping

A random variable Y ∈ R1 is said to come from a Gaussian or Normal
distribution with mean µ and variance σ2 if it has the probability density
function (pdf)

Y ∼ N(µ, σ2)⇒ p(Y | µ, σ2) =
1√

2πσ2
e−

1
2σ

(y−µ)2
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Training and Validating GP Emulators GP Introduction

Some Housekeeping

A random variable Y ∈ R1 is said to come from a Gaussian or Normal
distribution with mean µ and variance σ2 if it has the probability density
function (pdf)

Y ∼ N(µ, σ2)⇒ p(Y | µ, σ2) =
1√

2πσ2
e−

1
2σ

(y−µ)2

P(Y ∈ [a, b]) =
∫ b
a p(Y | µ, σ2)dy
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Training and Validating GP Emulators GP Introduction

Some Housekeeping

A random variable Y ∈ Rn is said to come from a Multivariate Gaussian
or Multivariate Normal with mean vector µ and covariance matrix Σ if
has pdf

Y1

Y2
...
Yn

 ∼ MVN(µ,Σ)⇒ p(Y | µ,Σ) = |2πΣ|−1/2e−
1
2

(Y−µ)′Σ−1(Y−µ)
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Training and Validating GP Emulators GP Introduction

Some Housekeeping

Multivariate Normal properties
If Y ∼ MVN(µ,Σ):

I Yi ∼ N(µi ,Σii )

I Cov(Yi ,Yj) = Σij = Σji

I Cov(Yi ,Yj) = 0⇔ Yi and Yj are independent (special for Gaussians)

I Σ must be symmetric, positive definite
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Training and Validating GP Emulators GP Introduction

Don’t Lose Sight!

The prediction and estimated errors are just going to come from
multivariate normals
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Training and Validating GP Emulators GP Introduction

Remember the Definition

I Formally, a Gaussian Process is a stochastic process Y indexed by
x ∈ X such that realizations are jointly Multivariate Normal.

I I.e. given locations x1, . . . xn, then Y (x1), . . .Y (xn) are MVN

I It is completely determined by a mean function µ(·) and a
positive-definite covariance function c(·, ·) through

µi = µ(xi ) Σij = c(xi , xj)

I We can think of a GP as a distribution over functions
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Training and Validating GP Emulators GP Introduction

A Concrete example

I Let points x1, x2, . . . xn ∈ X , where X is the input space.

I Let Y (·) ∼ GP(µ(·), c(·, ·)). Then
Y (x1)
Y (x2)

...
Y (xn)

 ∼ MVN



µ(x1)
µ(x2)

...
µ(xn)

 ,

c(x1, x1) . . . c(x1, xn)
...

. . .
...

c(xn, x1) . . . c(xn, xn)




I Examples: µ(·) ≡ 0; µ(·) ≡ µ; µ(x) ≡
∑

i xiβ, . . .,

I c(·, ·) are special functions that give rise to symmetric positive
definite matrices
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Training and Validating GP Emulators GP Introduction

Conditional Normal Theory

Let Y (xd) = [Y (xd1), . . . ,Y (xdn)]′ ∈ Rn, and similarly c(xd, xd) ∈ Rn×n(
Y (x∗)
Y (xd)

)
∼ MVN

[(
µ(x∗)
µ(xd)

)
,

(
c(x∗, x∗) c(x∗, xd)
c(xd, x

∗) c(xd, xd)

)]

then Y (x∗) | (Y (xd) = y) ∼ N(µ∗,Σ∗) where

µ∗ = µZ + c(x∗, xd)c(xd, xd)−1(y − µY )

Σ∗ = c(x∗, x∗)− c(x∗, xd)c(xd, xd)−1c(xd, x
∗)

Important!: The diagonal of Σ∗ gives the marginal variance of the
predicted points. A Gaussian random variable has 95% probability of
falling within ± 1.96 standard deviations from the mean.
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Training and Validating GP Emulators GP Introduction

GP Exercises

Assume you want to estimate the (unknown) function
y(x) = 3x + cos(5x), but you only know y at x = {−1,−0.5, 0, 0.5, 1}

I Find and plot the mean and variance at all points
x∗ = {−1,−0.99, . . . , 0.99, 1}. Compare to the truth

I Draw five possible sample paths using the above mean and variance
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Training and Validating GP Emulators Multivariate Output - PCA

PCA - Orthogonality and Dimension Reduction

Y = USV′ → Z = YV

I All of the columns of Z are orthogonal, and thus independent (if Z is
Multivariate Normal)

I The principal components can also tell us about the percent of
variance explained by each each component

I Let {s1, . . . , sp} = diag(S). Then the fraction of variance explained
by the first R columns of Z is

FR =

∑R
1 s2∑p
1 s

2
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Training and Validating GP Emulators Multivariate Output - PCA

Look for the Elbow

Decide on number of
components from “elbow,” or
some threshold of fraction of
variance explained
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Training and Validating GP Emulators Multivariate Output - PCA

PCA Exercise

Load the dev indices dataset

I Visualize fraction of variance explained, and choose a number of PCs

I Plot PC1 vs PC2. What is their correlation?
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Calibration Intro To Bayesian Analysis

The Bayesian Paradigm

Suppose you have a coin, and you’re not sure if it’s biased. You flip it 10
times, and get 8 heads. Consider the following scenarios:

I You think it could be biased, so getting 8/10 is suspicious.

I You’re very confident it’s not biased, so getting 8/10 is definitely not
convincing.

I You have no idea whether it’s biased or not, so getting 8/10 is pretty
convincing.

Bayesian analysis gives us a mathematical framework to insert our prior
beliefs
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Calibration Intro To Bayesian Analysis

Bayesian Paradigm, In Pictures

→

→
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Calibration Intro To Bayesian Analysis

Proper Math

Let θ be a parameter of interest, upon which data y depends. Bayesian
analysis has three main components

1. A chosen prior distribution on θ: p(θ)

2. A chosen likelihood of y : p(y | θ)

3. A resulting (of interest) posterior of θ: p(θ | y)

In other words: given some prior belief of θ and data from a model that
depends on θ, what are our posterior beliefs of θ given the data? We
explore this through Bayes Rule:

p(θ | y) =
p(y | θ)p(θ)∫

Θ p(y | θ)p(θ)dθ

∝ p(y | θ)p(θ)
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Calibration Intro To Bayesian Analysis

Understanding the Posterior

I If p(θ | y) is a known distribution, we can summarize with
mean/variance or draw samples directly

I If p(θ | y) is too complicated or unknown, must resort to sampling
methods

I Markov Chain Monte Carlo (MCMC) builds a sequence of draws
I Constructed so in “long run,” draws are samples from p(θ | y)
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Calibration Intro To Bayesian Analysis

Using emcee

I emcee is a Python library that facilitates posterior inference by
constructing an MCMC sampler. It computes a bunch chains in
parallel.

I The user supplies a function that calculates the (proportional) log
posterior pdf given parameters to sample

I The object EnsemblerSampler takes the number of chains (nwalkers)
and number of parameters to find posteriors of (dim), and the above
function

I The above sampler object has a method run mcmc() takes a starting
point and runs the chains for a number of specified samples.

I After the chains are run, the sampler object will have an attribute
chain containing the posterior draws.
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Calibration Intro To Bayesian Analysis

Exercises

Load the data coin tosses.txt.

I Use MCMC through the package emcee to explore different priors,
and how those priors impact the posterior

I Compare the results for a couple priors to the analytical posterior (we
can calculate it directly here because it’s a simple model)
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